Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 29, 2025

📄 23% (0.23x) speedup for cividis in src/bokeh/palettes.py

⏱️ Runtime : 2.84 milliseconds 2.30 milliseconds (best of 100 runs)

📝 Explanation and details

Optimizations.

  • Removed redundant usage of math.floor and generator expression in linear_palette by leveraging numpy's vectorized operations. This reduces overhead significantly for large palettes/sizes.
  • Avoided unnecessary imports (math) to speed up startup.
  • Ensured new code preserves all comments, type annotations, exception behavior, return values, and original style.
  • Retains tuple return type and index selection logic, behaviorally identical.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 191 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 1 Passed
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import pytest  # used for our unit tests
from bokeh.palettes import cividis

Cividis256 = (
    '#00204C', '#00204E', '#002150', '#002251', '#002353', '#002355', '#002456', '#002558', '#00265A', '#00265B', '#00275D', '#00285F',
    '#002861', '#002963', '#002A64', '#002A66', '#002B68', '#002C6A', '#002D6C', '#002D6D', '#002E6E', '#002E6F', '#002F6F', '#002F6F',
    '#00306F', '#00316F', '#00316F', '#00326E', '#00336E', '#00346E', '#00346E', '#01356E', '#06366E', '#0A376D', '#0E376D', '#12386D',
    '#15396D', '#17396D', '#1A3A6C', '#1C3B6C', '#1E3C6C', '#203C6C', '#223D6C', '#243E6C', '#263E6C', '#273F6C', '#29406B', '#2B416B',
    '#2C416B', '#2E426B', '#2F436B', '#31446B', '#32446B', '#33456B', '#35466B', '#36466B', '#37476B', '#38486B', '#3A496B', '#3B496B',
    '#3C4A6B', '#3D4B6B', '#3E4B6B', '#404C6B', '#414D6B', '#424E6B', '#434E6B', '#444F6B', '#45506B', '#46506B', '#47516B', '#48526B',
    '#49536B', '#4A536B', '#4B546B', '#4C556B', '#4D556B', '#4E566B', '#4F576C', '#50586C', '#51586C', '#52596C', '#535A6C', '#545A6C',
    '#555B6C', '#565C6C', '#575D6D', '#585D6D', '#595E6D', '#5A5F6D', '#5B5F6D', '#5C606D', '#5D616E', '#5E626E', '#5F626E', '#5F636E',
    '#60646E', '#61656F', '#62656F', '#63666F', '#64676F', '#65676F', '#666870', '#676970', '#686A70', '#686A70', '#696B71', '#6A6C71',
    '#6B6D71', '#6C6D72', '#6D6E72', '#6E6F72', '#6F6F72', '#6F7073', '#707173', '#717273', '#727274', '#737374', '#747475', '#757575',
    '#757575', '#767676', '#777776', '#787876', '#797877', '#7A7977', '#7B7A77', '#7B7B78', '#7C7B78', '#7D7C78', '#7E7D78', '#7F7E78',
    '#807E78', '#817F78', '#828078', '#838178', '#848178', '#858278', '#868378', '#878478', '#888578', '#898578', '#8A8678', '#8B8778',
    '#8C8878', '#8D8878', '#8E8978', '#8F8A78', '#908B78', '#918C78', '#928C78', '#938D78', '#948E78', '#958F78', '#968F77', '#979077',
    '#989177', '#999277', '#9A9377', '#9B9377', '#9C9477', '#9D9577', '#9E9676', '#9F9776', '#A09876', '#A19876', '#A29976', '#A39A75',
    '#A49B75', '#A59C75', '#A69C75', '#A79D75', '#A89E74', '#A99F74', '#AAA074', '#ABA174', '#ACA173', '#ADA273', '#AEA373', '#AFA473',
    '#B0A572', '#B1A672', '#B2A672', '#B4A771', '#B5A871', '#B6A971', '#B7AA70', '#B8AB70', '#B9AB70', '#BAAC6F', '#BBAD6F', '#BCAE6E',
    '#BDAF6E', '#BEB06E', '#BFB16D', '#C0B16D', '#C1B26C', '#C2B36C', '#C3B46C', '#C5B56B', '#C6B66B', '#C7B76A', '#C8B86A', '#C9B869',
    '#CAB969', '#CBBA68', '#CCBB68', '#CDBC67', '#CEBD67', '#D0BE66', '#D1BF66', '#D2C065', '#D3C065', '#D4C164', '#D5C263', '#D6C363',
    '#D7C462', '#D8C561', '#D9C661', '#DBC760', '#DCC860', '#DDC95F', '#DECA5E', '#DFCB5D', '#E0CB5D', '#E1CC5C', '#E3CD5B', '#E4CE5B',
    '#E5CF5A', '#E6D059', '#E7D158', '#E8D257', '#E9D356', '#EBD456', '#ECD555', '#EDD654', '#EED753', '#EFD852', '#F0D951', '#F1DA50',
    '#F3DB4F', '#F4DC4E', '#F5DD4D', '#F6DE4C', '#F7DF4B', '#F9E049', '#FAE048', '#FBE147', '#FCE246', '#FDE345', '#FFE443', '#FFE542',
    '#FFE642', '#FFE743', '#FFE844', '#FFE945')
from bokeh.palettes import cividis

# unit tests

# --- Basic Test Cases ---

def test_cividis_basic_1():
    # Test n=1 returns the first color only
    codeflash_output = cividis(1); result = codeflash_output # 22.9μs -> 23.5μs (2.18% slower)

def test_cividis_basic_2():
    # Test n=2 returns first and last color
    codeflash_output = cividis(2); result = codeflash_output # 21.4μs -> 20.8μs (2.89% faster)

def test_cividis_basic_3():
    # Test n=6 returns correct colors (from docstring example)
    codeflash_output = cividis(6); result = codeflash_output # 21.3μs -> 21.3μs (0.019% faster)
    expected = ('#00204C', '#31446B', '#666870', '#958F78', '#CAB969', '#FFE945')

def test_cividis_basic_4():
    # Test n=256 returns the full palette
    codeflash_output = cividis(256); result = codeflash_output # 43.3μs -> 33.5μs (29.1% faster)

def test_cividis_basic_5():
    # Test n=10 returns evenly spaced colors
    codeflash_output = cividis(10); result = codeflash_output # 21.2μs -> 21.7μs (2.52% slower)
    # Check that all colors are strings and hex
    for color in result:
        pass

# --- Edge Test Cases ---

def test_cividis_edge_zero():
    # n=0 should return an empty tuple
    codeflash_output = cividis(0); result = codeflash_output # 16.8μs -> 18.4μs (8.81% slower)


def test_cividis_edge_overflow():
    # n > 256 should raise ValueError
    with pytest.raises(ValueError):
        cividis(257) # 1.88μs -> 1.95μs (3.59% slower)

def test_cividis_edge_type_error():
    # n is not an integer (float, string, None) should raise TypeError
    with pytest.raises(TypeError):
        cividis("10") # 1.84μs -> 2.00μs (7.81% slower)
    with pytest.raises(TypeError):
        cividis(None) # 900ns -> 926ns (2.81% slower)
    with pytest.raises(TypeError):
        cividis(5.5) # 4.02μs -> 3.62μs (11.1% faster)

def test_cividis_edge_maximum():
    # n=256 returns full palette, n=255 returns palette of length 255
    codeflash_output = cividis(256); result_256 = codeflash_output # 58.1μs -> 49.1μs (18.4% faster)
    codeflash_output = cividis(255); result_255 = codeflash_output # 31.0μs -> 21.8μs (42.1% faster)

def test_cividis_edge_duplicates():
    # For n=256, all colors should be unique
    codeflash_output = cividis(256); result = codeflash_output # 42.6μs -> 33.1μs (28.8% faster)

def test_cividis_edge_monotonic():
    # The palette should be monotonic in index, i.e. colors should be in order
    codeflash_output = cividis(10); result = codeflash_output # 21.6μs -> 21.4μs (0.672% faster)
    indices = [Cividis256.index(c) for c in result]

# --- Large Scale Test Cases ---

def test_cividis_large_scale_100():
    # Test with n=100 (large but <256)
    codeflash_output = cividis(100); result = codeflash_output # 30.4μs -> 27.1μs (12.1% faster)

def test_cividis_large_scale_999():
    # Test with n=999 (just below overflow)
    with pytest.raises(ValueError):
        cividis(999) # 1.47μs -> 1.58μs (7.10% slower)

def test_cividis_large_scale_performance():
    # Performance: n=128, should return quickly and correctly
    codeflash_output = cividis(128); result = codeflash_output # 37.7μs -> 32.8μs (14.9% faster)
    # Check that all colors are valid hex strings
    for color in result:
        pass

def test_cividis_large_scale_even_spacing():
    # For n=16, colors should be spaced evenly in the palette
    codeflash_output = cividis(16); result = codeflash_output # 23.4μs -> 23.6μs (0.581% slower)
    indices = [Cividis256.index(c) for c in result]
    # The difference between consecutive indices should be close to 255/15
    diffs = [indices[i+1] - indices[i] for i in range(len(indices)-1)]
    avg_diff = sum(diffs) / len(diffs)

def test_cividis_large_scale_first_last():
    # For n=256, first and last colors must match palette
    codeflash_output = cividis(256); result = codeflash_output # 42.9μs -> 33.7μs (27.5% faster)

# --- Additional Edge Cases ---

def test_cividis_edge_one_less():
    # n=255 should not include the last color twice
    codeflash_output = cividis(255); result = codeflash_output # 42.5μs -> 34.0μs (25.1% faster)

def test_cividis_edge_palette_unchanged():
    # cividis should not modify the global palette
    before = Cividis256[:]
    codeflash_output = cividis(10); _ = codeflash_output # 21.2μs -> 22.0μs (3.86% slower)
    after = Cividis256[:]

def test_cividis_edge_return_type():
    # Should always return a tuple
    codeflash_output = cividis(5); result = codeflash_output # 20.5μs -> 21.1μs (3.08% slower)

def test_cividis_edge_empty_tuple():
    # n=0 and n<0 should return empty tuple, not None or other type
    codeflash_output = cividis(0)
    codeflash_output = cividis(-1)

def test_cividis_edge_n_is_bool():
    # n=True/False should act as 1/0
    codeflash_output = cividis(True) # 38.6μs -> 38.8μs (0.531% slower)
    codeflash_output = cividis(False) # 9.07μs -> 9.51μs (4.61% slower)

# --- Mutation Sensitivity ---

def test_cividis_mutation_sensitivity():
    # Changing the palette order should fail this test
    codeflash_output = cividis(6); result = codeflash_output # 22.9μs -> 23.4μs (2.40% slower)
    expected = ('#00204C', '#31446B', '#666870', '#958F78', '#CAB969', '#FFE945')

def test_cividis_mutation_spacing():
    # If linear_palette changes spacing logic, this test will fail
    codeflash_output = cividis(3); result = codeflash_output # 21.0μs -> 21.6μs (2.80% slower)
    expected = (Cividis256[0], Cividis256[127], Cividis256[255])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import pytest  # used for our unit tests
from bokeh.palettes import cividis

Cividis256 = (
    '#00204C', '#00204E', '#002150', '#002251', '#002353', '#002355', '#002456', '#002558', '#00265A', '#00265B', '#00275D', '#00285F',
    '#002861', '#002963', '#002A64', '#002A66', '#002B68', '#002C6A', '#002D6C', '#002D6D', '#002E6E', '#002E6F', '#002F6F', '#002F6F',
    '#00306F', '#00316F', '#00316F', '#00326E', '#00336E', '#00346E', '#00346E', '#01356E', '#06366E', '#0A376D', '#0E376D', '#12386D',
    '#15396D', '#17396D', '#1A3A6C', '#1C3B6C', '#1E3C6C', '#203C6C', '#223D6C', '#243E6C', '#263E6C', '#273F6C', '#29406B', '#2B416B',
    '#2C416B', '#2E426B', '#2F436B', '#31446B', '#32446B', '#33456B', '#35466B', '#36466B', '#37476B', '#38486B', '#3A496B', '#3B496B',
    '#3C4A6B', '#3D4B6B', '#3E4B6B', '#404C6B', '#414D6B', '#424E6B', '#434E6B', '#444F6B', '#45506B', '#46506B', '#47516B', '#48526B',
    '#49536B', '#4A536B', '#4B546B', '#4C556B', '#4D556B', '#4E566B', '#4F576C', '#50586C', '#51586C', '#52596C', '#535A6C', '#545A6C',
    '#555B6C', '#565C6C', '#575D6D', '#585D6D', '#595E6D', '#5A5F6D', '#5B5F6D', '#5C606D', '#5D616E', '#5E626E', '#5F626E', '#5F636E',
    '#60646E', '#61656F', '#62656F', '#63666F', '#64676F', '#65676F', '#666870', '#676970', '#686A70', '#686A70', '#696B71', '#6A6C71',
    '#6B6D71', '#6C6D72', '#6D6E72', '#6E6F72', '#6F6F72', '#6F7073', '#707173', '#717273', '#727274', '#737374', '#747475', '#757575',
    '#757575', '#767676', '#777776', '#787876', '#797877', '#7A7977', '#7B7A77', '#7B7B78', '#7C7B78', '#7D7C78', '#7E7D78', '#7F7E78',
    '#807E78', '#817F78', '#828078', '#838178', '#848178', '#858278', '#868378', '#878478', '#888578', '#898578', '#8A8678', '#8B8778',
    '#8C8878', '#8D8878', '#8E8978', '#8F8A78', '#908B78', '#918C78', '#928C78', '#938D78', '#948E78', '#958F78', '#968F77', '#979077',
    '#989177', '#999277', '#9A9377', '#9B9377', '#9C9477', '#9D9577', '#9E9676', '#9F9776', '#A09876', '#A19876', '#A29976', '#A39A75',
    '#A49B75', '#A59C75', '#A69C75', '#A79D75', '#A89E74', '#A99F74', '#AAA074', '#ABA174', '#ACA173', '#ADA273', '#AEA373', '#AFA473',
    '#B0A572', '#B1A672', '#B2A672', '#B4A771', '#B5A871', '#B6A971', '#B7AA70', '#B8AB70', '#B9AB70', '#BAAC6F', '#BBAD6F', '#BCAE6E',
    '#BDAF6E', '#BEB06E', '#BFB16D', '#C0B16D', '#C1B26C', '#C2B36C', '#C3B46C', '#C5B56B', '#C6B66B', '#C7B76A', '#C8B86A', '#C9B869',
    '#CAB969', '#CBBA68', '#CCBB68', '#CDBC67', '#CEBD67', '#D0BE66', '#D1BF66', '#D2C065', '#D3C065', '#D4C164', '#D5C263', '#D6C363',
    '#D7C462', '#D8C561', '#D9C661', '#DBC760', '#DCC860', '#DDC95F', '#DECA5E', '#DFCB5D', '#E0CB5D', '#E1CC5C', '#E3CD5B', '#E4CE5B',
    '#E5CF5A', '#E6D059', '#E7D158', '#E8D257', '#E9D356', '#EBD456', '#ECD555', '#EDD654', '#EED753', '#EFD852', '#F0D951', '#F1DA50',
    '#F3DB4F', '#F4DC4E', '#F5DD4D', '#F6DE4C', '#F7DF4B', '#F9E049', '#FAE048', '#FBE147', '#FCE246', '#FDE345', '#FFE443', '#FFE542',
    '#FFE642', '#FFE743', '#FFE844', '#FFE945')
from bokeh.palettes import cividis

# unit tests

# --- Basic Test Cases ---

def test_cividis_basic_small_palette():
    # Test that cividis(6) returns the documented expected values
    codeflash_output = cividis(6) # 21.3μs -> 21.5μs (1.11% slower)

def test_cividis_basic_single_color():
    # Test that cividis(1) returns just the first color
    codeflash_output = cividis(1) # 21.2μs -> 22.7μs (6.53% slower)

def test_cividis_basic_two_colors():
    # Test that cividis(2) returns first and last color
    codeflash_output = cividis(2) # 20.5μs -> 20.9μs (2.05% slower)

def test_cividis_basic_three_colors():
    # Test that cividis(3) returns first, middle, last color
    codeflash_output = cividis(3) # 20.2μs -> 20.9μs (3.37% slower)

def test_cividis_basic_four_colors():
    # Test that cividis(4) returns first, 1/3, 2/3, last color
    codeflash_output = cividis(4) # 19.5μs -> 20.7μs (5.83% slower)

def test_cividis_basic_full_palette():
    # Test that cividis(256) returns the full Cividis256 palette
    codeflash_output = cividis(256) # 43.1μs -> 34.0μs (26.9% faster)

def test_cividis_basic_return_type_and_length():
    # Test that cividis returns a tuple of length n
    for n in [1, 2, 10, 100, 256]:
        codeflash_output = cividis(n); result = codeflash_output # 84.0μs -> 71.3μs (17.8% faster)

def test_cividis_basic_color_format():
    # Test that all returned colors are hex strings of format '#RRGGBB'
    codeflash_output = cividis(10); result = codeflash_output # 19.6μs -> 19.4μs (0.848% faster)
    for color in result:
        # All characters after # are valid hex digits
        int(color[1:], 16)  # should not raise

# --- Edge Test Cases ---

def test_cividis_edge_zero_colors():
    # Test that cividis(0) returns an empty tuple
    codeflash_output = cividis(0) # 16.5μs -> 17.2μs (4.39% slower)

def test_cividis_edge_n_greater_than_256_raises():
    # Test that n > 256 raises ValueError
    with pytest.raises(ValueError):
        cividis(257) # 1.55μs -> 1.60μs (2.88% slower)
    with pytest.raises(ValueError):
        cividis(1000) # 946ns -> 931ns (1.61% faster)

def test_cividis_edge_negative_n_raises():
    # Test that negative n raises ValueError
    with pytest.raises(ValueError):
        cividis(-1) # 3.91μs -> 3.83μs (2.04% faster)
    with pytest.raises(ValueError):
        cividis(-100) # 1.56μs -> 1.46μs (7.15% faster)

def test_cividis_edge_non_integer_n_raises():
    # Test that non-integer n raises TypeError
    with pytest.raises(TypeError):
        cividis(5.5) # 3.26μs -> 2.97μs (9.87% faster)
    with pytest.raises(TypeError):
        cividis('10') # 1.42μs -> 1.46μs (2.81% slower)
    with pytest.raises(TypeError):
        cividis(None) # 789ns -> 766ns (3.00% faster)

def test_cividis_edge_palette_is_immutable():
    # Test that returned palette is a tuple (immutable)
    codeflash_output = cividis(5); result = codeflash_output # 30.3μs -> 30.7μs (1.35% slower)
    with pytest.raises(AttributeError):
        result.append('#000000')
    with pytest.raises(TypeError):
        result[0] = '#000000'

def test_cividis_edge_colors_are_unique_for_n_256():
    # Test that cividis(256) returns all unique colors
    codeflash_output = cividis(256); result = codeflash_output # 45.5μs -> 36.1μs (26.0% faster)

def test_cividis_edge_colors_are_unique_for_small_n():
    # Test that cividis(n) returns unique colors for small n
    for n in range(1, 10):
        codeflash_output = cividis(n); result = codeflash_output # 76.8μs -> 77.8μs (1.31% slower)

def test_cividis_edge_consistency():
    # Test that repeated calls with same n give same result
    codeflash_output = cividis(7) # 19.4μs -> 18.8μs (3.54% faster)
    codeflash_output = cividis(128) # 20.4μs -> 15.9μs (28.3% faster)

def test_cividis_edge_monotonic_palette():
    # Test that palette colors are monotonic in their indices
    # That is, for n > 1, the i-th color is always from a higher index than the previous
    for n in [2, 5, 10, 256]:
        codeflash_output = cividis(n); result = codeflash_output # 63.3μs -> 54.5μs (16.1% faster)
        indices = [Cividis256.index(color) for color in result]

# --- Large Scale Test Cases ---

def test_cividis_large_scale_1000_colors_raises():
    # Test that requesting a very large palette (n=1000) raises ValueError
    with pytest.raises(ValueError):
        cividis(1000) # 1.57μs -> 1.61μs (2.85% slower)

def test_cividis_large_scale_just_under_limit():
    # Test that requesting just under the limit (n=256) works and is fast
    import time
    start = time.time()
    codeflash_output = cividis(256); result = codeflash_output # 48.4μs -> 38.5μs (25.6% faster)
    duration = time.time() - start

def test_cividis_large_scale_many_calls():
    # Test that calling cividis many times with different n is stable and fast
    for n in range(1, 257, 50):
        codeflash_output = cividis(n); result = codeflash_output # 121μs -> 94.3μs (28.5% faster)
        # All returned colors are in the base palette
        for color in result:
            pass

def test_cividis_large_scale_stress():
    # Stress test: call cividis(100) 100 times and check results
    for _ in range(100):
        codeflash_output = cividis(100); result = codeflash_output # 1.37ms -> 966μs (41.5% faster)

def test_cividis_large_scale_sequential_palettes():
    # Test that increasing n yields palettes with first and last color unchanged
    for n in range(2, 20):
        codeflash_output = cividis(n); result = codeflash_output # 129μs -> 123μs (4.38% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from bokeh.palettes import cividis

def test_cividis():
    cividis(0)
🔎 Concolic Coverage Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
codeflash_concolic_5f34sbte/tmp0x6m3ip7/test_concolic_coverage.py::test_cividis 21.3μs 21.5μs -0.759%⚠️

To edit these changes git checkout codeflash/optimize-cividis-mhbhwclz and push.

Codeflash

**Optimizations**.
- Removed redundant usage of `math.floor` and generator expression in `linear_palette` by leveraging numpy's vectorized operations. This reduces overhead significantly for large palettes/sizes.
- Avoided unnecessary imports (`math`) to speed up startup.
- Ensured new code preserves all comments, type annotations, exception behavior, return values, and original style.
- Retains tuple return type and index selection logic, behaviorally identical.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 29, 2025 04:28
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Oct 29, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant