Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v3.0.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1260,6 +1260,7 @@ Groupby/resample/rolling
- Bug in :meth:`Rolling.skew` incorrectly computing skewness for windows following outliers due to numerical instability. The calculation now properly handles catastrophic cancellation by recomputing affected windows (:issue:`47461`)
- Bug in :meth:`Series.resample` could raise when the date range ended shortly before a non-existent time. (:issue:`58380`)
- Bug in :meth:`Series.resample` raising error when resampling non-nanosecond resolutions out of bounds for nanosecond precision (:issue:`57427`)
- Bug in :meth:`Series.rolling.var` and :meth:`Series.rolling.std` computing incorrect results due to numerical instability. (:issue:`47721`, :issue:`52407`, :issue:`54518`, :issue:`55343`)

Reshaping
^^^^^^^^^
Expand Down
69 changes: 35 additions & 34 deletions pandas/_libs/window/aggregations.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -332,19 +332,13 @@ cdef float64_t calc_var(
int ddof,
float64_t nobs,
float64_t ssqdm_x,
int64_t num_consecutive_same_value
) noexcept nogil:
cdef:
float64_t result

# Variance is unchanged if no observation is added or removed
if (nobs >= minp) and (nobs > ddof):

# pathological case & repeatedly same values case
if nobs == 1 or num_consecutive_same_value >= nobs:
result = 0
else:
result = ssqdm_x / (nobs - <float64_t>ddof)
result = ssqdm_x / (nobs - <float64_t>ddof)
else:
result = NaN

Expand All @@ -357,27 +351,19 @@ cdef void add_var(
float64_t *mean_x,
float64_t *ssqdm_x,
float64_t *compensation,
int64_t *num_consecutive_same_value,
float64_t *prev_value,
bint *numerically_unstable,
) noexcept nogil:
""" add a value from the var calc """
cdef:
float64_t delta, prev_mean, y, t
float64_t prev_m2 = ssqdm_x[0]

# GH#21813, if msvc 2017 bug is resolved, we should be OK with != instead of `isnan`
if val != val:
return

nobs[0] = nobs[0] + 1

# GH#42064, record num of same values to remove floating point artifacts
if val == prev_value[0]:
num_consecutive_same_value[0] += 1
else:
# reset to 1 (include current value itself)
num_consecutive_same_value[0] = 1
prev_value[0] = val

# Welford's method for the online variance-calculation
# using Kahan summation
# https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
Expand All @@ -392,17 +378,23 @@ cdef void add_var(
mean_x[0] = 0
ssqdm_x[0] = ssqdm_x[0] + (val - prev_mean) * (val - mean_x[0])

if prev_m2 * InvCondTol > ssqdm_x[0]:
# possible catastrophic cancellation
numerically_unstable[0] = True


cdef void remove_var(
float64_t val,
float64_t *nobs,
float64_t *mean_x,
float64_t *ssqdm_x,
float64_t *compensation
float64_t *compensation,
bint *numerically_unstable,
) noexcept nogil:
""" remove a value from the var calc """
cdef:
float64_t delta, prev_mean, y, t
float64_t prev_m2 = ssqdm_x[0]
if val == val:
nobs[0] = nobs[0] - 1
if nobs[0]:
Expand All @@ -416,9 +408,14 @@ cdef void remove_var(
delta = t
mean_x[0] = mean_x[0] - delta / nobs[0]
ssqdm_x[0] = ssqdm_x[0] - (val - prev_mean) * (val - mean_x[0])

if prev_m2 * InvCondTol > ssqdm_x[0]:
# possible catastrophic cancellation
numerically_unstable[0] = True
else:
mean_x[0] = 0
ssqdm_x[0] = 0
numerically_unstable[0] = False


def roll_var(const float64_t[:] values, ndarray[int64_t] start,
Expand All @@ -428,11 +425,12 @@ def roll_var(const float64_t[:] values, ndarray[int64_t] start,
"""
cdef:
float64_t mean_x, ssqdm_x, nobs, compensation_add,
float64_t compensation_remove, prev_value
int64_t s, e, num_consecutive_same_value
float64_t compensation_remove
int64_t s, e
Py_ssize_t i, j, N = len(start)
ndarray[float64_t] output
bint is_monotonic_increasing_bounds
bint requires_recompute, numerically_unstable

minp = max(minp, 1)
is_monotonic_increasing_bounds = is_monotonic_increasing_start_end_bounds(
Expand All @@ -449,32 +447,35 @@ def roll_var(const float64_t[:] values, ndarray[int64_t] start,

# Over the first window, observations can only be added
# never removed
if i == 0 or not is_monotonic_increasing_bounds or s >= end[i - 1]:

prev_value = values[s]
num_consecutive_same_value = 0

mean_x = ssqdm_x = nobs = compensation_add = compensation_remove = 0
for j in range(s, e):
add_var(values[j], &nobs, &mean_x, &ssqdm_x, &compensation_add,
&num_consecutive_same_value, &prev_value)

else:
requires_recompute = (
i == 0
or not is_monotonic_increasing_bounds
or s >= end[i - 1]
)

if not requires_recompute:
# After the first window, observations can both be added
# and removed

# calculate deletes
for j in range(start[i - 1], s):
remove_var(values[j], &nobs, &mean_x, &ssqdm_x,
&compensation_remove)
&compensation_remove, &numerically_unstable)

# calculate adds
for j in range(end[i - 1], e):
add_var(values[j], &nobs, &mean_x, &ssqdm_x, &compensation_add,
&num_consecutive_same_value, &prev_value)
&numerically_unstable)

if requires_recompute or numerically_unstable:

mean_x = ssqdm_x = nobs = compensation_add = compensation_remove = 0
for j in range(s, e):
add_var(values[j], &nobs, &mean_x, &ssqdm_x, &compensation_add,
&numerically_unstable)
numerically_unstable = False

output[i] = calc_var(minp, ddof, nobs, ssqdm_x, num_consecutive_same_value)
output[i] = calc_var(minp, ddof, nobs, ssqdm_x)

if not is_monotonic_increasing_bounds:
nobs = 0.0
Expand Down
99 changes: 80 additions & 19 deletions pandas/tests/window/test_rolling.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,6 @@

from pandas.compat import (
IS64,
is_platform_arm,
is_platform_power,
is_platform_riscv64,
)
from pandas.errors import Pandas4Warning

Expand Down Expand Up @@ -1085,27 +1082,91 @@ def test_rolling_sem(frame_or_series):
tm.assert_series_equal(result, expected)


@pytest.mark.xfail(
is_platform_arm() or is_platform_power() or is_platform_riscv64(),
reason="GH 38921",
)
@pytest.mark.parametrize(
("func", "third_value", "values"),
("func", "values", "window", "ddof", "expected_values"),
[
("var", 1, [5e33, 0, 0.5, 0.5, 2, 0]),
("std", 1, [7.071068e16, 0, 0.7071068, 0.7071068, 1.414214, 0]),
("var", 2, [5e33, 0.5, 0, 0.5, 2, 0]),
("std", 2, [7.071068e16, 0.7071068, 0, 0.7071068, 1.414214, 0]),
("var", [99999999999999999, 1, 1, 2, 3, 1, 1], 2, 1, [5e33, 0, 0.5, 0.5, 2, 0]),
(
"std",
[99999999999999999, 1, 1, 2, 3, 1, 1],
2,
1,
[7.071068e16, 0, 0.7071068, 0.7071068, 1.414214, 0],
),
("var", [99999999999999999, 1, 2, 2, 3, 1, 1], 2, 1, [5e33, 0.5, 0, 0.5, 2, 0]),
(
"std",
[99999999999999999, 1, 2, 2, 3, 1, 1],
2,
1,
[7.071068e16, 0.7071068, 0, 0.7071068, 1.414214, 0],
),
(
"std",
[1.2e03, 1.3e17, 1.5e17, 1.995e03, 1.990e03],
2,
1,
[9.192388e16, 1.414214e16, 1.060660e17, 3.535534e00],
),
(
"var",
[
0.00000000e00,
0.00000000e00,
3.16188252e-18,
2.95781651e-16,
2.23153542e-51,
0.00000000e00,
0.00000000e00,
5.39943432e-48,
1.38206260e-73,
0.00000000e00,
],
3,
1,
[
3.33250036e-036,
2.88538519e-032,
2.88538519e-032,
2.91622617e-032,
1.65991678e-102,
9.71796366e-096,
9.71796366e-096,
9.71796366e-096,
],
),
(
"std",
[1, -1, 0, 1, 3, 2, -2, 10000000000, 1, 2, 0, -2, 1, 3, 0, 1],
6,
1,
[
1.41421356e00,
1.87082869e00,
4.08248290e09,
4.08248290e09,
4.08248290e09,
4.08248290e09,
4.08248290e09,
4.08248290e09,
1.72240142e00,
1.75119007e00,
1.64316767e00,
],
),
],
)
def test_rolling_var_numerical_issues(func, third_value, values):
# GH: 37051
ds = Series([99999999999999999, 1, third_value, 2, 3, 1, 1])
result = getattr(ds.rolling(2), func)()
expected = Series([np.nan] + values)
tm.assert_series_equal(result, expected)
def test_rolling_var_correctness(func, values, window, ddof, expected_values):
# GH: 37051, 42064, 54518, 52407, 47721
ts = Series(values)
result = getattr(ts.rolling(window=window), func)(ddof=ddof)
if result.last_valid_index():
result = result[
result.first_valid_index() : result.last_valid_index() + 1
].reset_index(drop=True)
expected = Series(expected_values)
tm.assert_series_equal(result, expected, atol=1e-55)
# GH 42064
# new `roll_var` will output 0.0 correctly
tm.assert_series_equal(result == 0, expected == 0)


Expand Down
Loading