Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions keras/src/layers/preprocessing/normalization.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@
from keras.src import ops
from keras.src.api_export import keras_export
from keras.src.layers.preprocessing.data_layer import DataLayer
from keras.src.trainers.data_adapters import get_data_adapter
from keras.src.utils.module_utils import tensorflow as tf
from keras.utils import PyDataset


@keras_export("keras.layers.Normalization")
Expand Down Expand Up @@ -229,6 +231,19 @@ def adapt(self, data):
# Batch dataset if it isn't batched
data = data.batch(128)
input_shape = tuple(data.element_spec.shape)
elif isinstance(data, PyDataset):
adapter = get_data_adapter(data)
tf_dataset = adapter.get_tf_dataset()
# args will either be (samples,), (samples, labels) pairs,
# or (samples, labels, sample_weights) tuples
data = tf_dataset.map(lambda *args: args[0])
input_shape = data.element_spec.shape
else:
raise TypeError(
f"Unsupported data type: {type(data)}. `adapt` supports "
f"`np.ndarray`, backend tensors, `tf.data.Dataset`, and "
f"`keras.utils.PyDataset`."
)

if not self.built:
self.build(input_shape)
Expand Down
32 changes: 32 additions & 0 deletions keras/src/layers/preprocessing/normalization_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,3 +169,35 @@ def test_normalization_with_scalar_mean_var(self):
input_data = np.array([[1, 2, 3]], dtype="float32")
layer = layers.Normalization(mean=3.0, variance=2.0)
layer(input_data)

@parameterized.parameters([("x",), ("x_and_y",), ("x_y_and_weights")])
def test_adapt_pydataset_compat(self, pydataset_type):
import keras

class CustomDataset(keras.utils.PyDataset):
def __len__(self):
return 100

def __getitem__(self, idx):
x = np.random.rand(32, 32, 3)
y = np.random.randint(0, 10, size=(1,))
weights = np.random.randint(0, 10, size=(1,))
if pydataset_type == "x":
return x
elif pydataset_type == "x_and_y":
return x, y
elif pydataset_type == "x_y_and_weights":
return x, y, weights
else:
raise NotImplementedError(pydataset_type)

normalizer = keras.layers.Normalization()
normalizer.adapt(CustomDataset())
self.assertTrue(normalizer.built)
self.assertIsNotNone(normalizer.mean)
self.assertIsNotNone(normalizer.variance)
self.assertEqual(normalizer.mean.shape[-1], 3)
self.assertEqual(normalizer.variance.shape[-1], 3)
sample_input = np.random.rand(1, 32, 32, 3)
output = normalizer(sample_input)
self.assertEqual(output.shape, (1, 32, 32, 3))