This tool is able to generate dummy csv, flat text or json files based on the configuration settings you setup for your project(s).
-
Developer information (for further tool development)
One common usage scenario can be load / stress / performance testing of file-processing data tools, allowing you to generate the files needed from a command line.
git clone https://github.com/datahappy1/dummy_file_generator c:\dummy_file_generator\- Set PYTHONPATH to c:\dummy_file_generator\ tutorial
The CLI tool needs these MANDATORY arguments defining:
- projectname
--projectnameor-pnbased on the projectname, the dummy file project specific settings fromdummy_file_generator/configs/config.jsonfile are loaded , - absolutepath
--generated_file_pathor-gpdefining the full output file path to the file you are about to generate
Provided arguments have higher precedence than fallback values in
settings.py
The CLI tool can further consume these OPTIONAL arguments defining:
- filesize
--filesizeor-fsdefining the desired size (in kBs) of the output file - rowcount
--rowcountor-rcdefining the desired row count of the output file
Note if you do NOT specify the filesize and do NOT specify the rowcount, the default
row_countvalue fromsettings.pywill be used ( or the value you provide in thedefault_rowcountoptional argument)
The CLI tool also supports these OPTIONAL arguments that can be used to override values in settings.py:
- logging_level
--logging_levelor-lldefining the Python logging level - default_rowcount
--default_rowcountor-drcdefining the rowcount fallback value when neither row_count,neither file_size set - file_encoding
--file_encodingor-fendefining the generated files encoding - file_line_ending
--file_line_endingor-fledefining the file line ending
These two OPTIONAL arguments are typically needed when running the tool as an imported package, but you can use them even with this tool running as CLI:
- data_files_location
--data_files_locationor-dfldefining the path to the source .txt data files - config_json_path
--config_json_pathor-cjpdefining the custom path to your config.json file
cd c:\dummy_file_generator\dummy_file_generatorpython c:\dummy_file_generator\dummy_file_generator\__main__.py -pn dummy1 -gp c:\myfiles\dummy1file.csv -fs 256
cd c:\dummy_file_generator\dummy_file_generatorpython c:\dummy_file_generator\dummy_file_generator\__main__.py -pn dummy1 -gp c:\myfiles\dummy1file.csv -rc 1000
One common usage scenario can be load / stress / performance testing of file-processing data tools, where you can generate dummy text files during the test fixtures / setup.
pip install dummy-file-generator
You are strongly encouraged to use the Python virtual environment or Pipenv
The dummy file generator imported package needs these MANDATORY arguments defining:
- projectname
--projectnameor-pn, based on the project name, the dummy file specific settings fromconfig.jsonfile are loaded - generated_file_path
--generated_file_pathorgpdefining the full output file path to the file you are about to generate
Provided arguments have higher precedence than fallback values in
settings.py
The dummy file generator imported package can further consume these OPTIONAL arguments defining:
- filesize
--filesizeor-fsdefining the desired size (in kBs) of the output file - rowcount
--rowcountor-rcdefining the desired row count of the output file
Note if you do NOT specify the filesize and do NOT specify the rowcount, the
DEFAULT_ROW_COUNTvalue fromsettings.pywill be used ( you can override theDEFAULT_ROW_COUNTvalue insettings.pyusing thedefault_rowcountoptional argument)
- data_files_location
--data_files_locationor-dfldefining the path to the source .txt data files - config_json_path
--config_json_pathor-cjpdefining the custom path to yourconfig.jsonfile - logging_level
--logging_levelor-lldefining the Python logging level - default_rowcount
--default_rowcountor-drcdefining the rowcount fallback value when neither row_count,neither file_size set - file_encoding
--file_encodingor-fendefining the generated files encoding - file_line_ending
--file_line_endingor-fledefining the file line ending
In the example below,
project_scope_kwargsargumentsproject_name,data_files_location,config_json_pathanddefault_rowcountare used to instantiate a DummyFileGenerator class instance.file_scope_kwargsargumentsgenerated_file_path,file_size,file_encodingandfile_line_endingare used to setup the generated file properties. Once there is a instance of DummyFileGenerator, you can use it to generate as many files as needed while only using thewrite_output_filemethod and it's specificfile_scope_kwargsarguments
from dummy_file_generator import DummyFileGenerator as Dfg, DummyFileGeneratorException
logging_level = "INFO"
project_scope_kwargs = {
"project_name": "dummy1",
"data_files_location": "c:\\dfg_files\my_data_files",
"config_json_path": "c:\\dfg_files\my_configs\config.json",
"default_rowcount": None,
}
try:
dfg = Dfg(logging_level, **project_scope_kwargs)
except DummyFileGeneratorException as DFG_ERR:
raise DFG_ERR
file_scope_kwargs = {
"generated_file_path": "C:\dfg\\bin\\file1.csv",
"file_size": 1024,
#"row_count": 1000,
"file_encoding": "utf8",
"file_line_ending": "\n",
}
try:
dfg.write_output_file(**file_scope_kwargs)
except DummyFileGeneratorException as DFG_ERR:
raise DFG_ERR
You need to generate dummy files based on the content of the text files in your data_files folder, and these source text files need to have this plain text format:
This tool picks random item from each of the files configured for your project in config.json and uses these values to populate the data for "columns" for each written row.
If you need to generate a dummy .csv file containing 3 columns for Names, Dates and IDs, the project JSON object in your config.json would need to be setup like:
{
"project_name":"dummy1",
"file_type":"csv",
"header":true,
"csv_value_separator": ",",
"csv_quoting": "ALL",
"csv_quote_char": "'",
"csv_escape_char": "\\",
"columns":[
{
"column_name":"Name",
"datafile":"first_names.txt"
},
{
"column_name":"Date",
"datafile":"dates.txt"
},
{
"column_name":"ID",
"datafile":"ids.txt"
}
]
}
This configuration generates a file like this sample:
'Name','Date','ID'
'Hank','2004-05-22','23432'
'Joe','2000-03-12','445'
If you need to generate a dummy .txt flat file containing 3 columns for Names, Dates and IDs with specific column lengths defined, the "project" JSON object in your config.json would need to be setup like:
{
"project_name":"dummy2",
"file_type":"flat",
"header":true,
"columns":[
{
"column_name":"Name",
"column_len":10,
"datafile":"first_names.txt"
},
{
"column_name":"Date",
"column_len":12,
"datafile":"dates.txt"
},
{
"column_name":"ID",
"column_len":9,
"datafile":"ids.txt"
}
]
}
This configuration generates a file like this sample:
Name Date ID
Hank 2004-05-22 23432
Joe 2000-03-12 445
If you need to generate a dummy .json file containing 3 columns for Names, Dates and IDs, the "project" JSON object in your config.json would need to be setup like:
{
"project_name":"dummy3",
"file_type":"json",
"columns":[
{
"column_name":"Name",
"datafile":"first_names.txt"
},
{
"column_name":"Date",
"datafile":"dates.txt"
},
{
"column_name":"ID",
"datafile":"ids.txt"
}
]
}
This configuration generates a file like this sample:
[{"Name": "Hank", "Date": "2004-05-22", "ID": "23432"},
{"Name": "Joe", "Date": "2000-03-12", "ID": "445"}]
If you need to generate a more complex dummy .json file containing 3 columns for Names, Dates, IDs and an array-like column Identifiers containing one IDs array element and an object containing ID1 and ID2 attributes, the "project" JSON object in your config.json would need to be setup like:
{
"project_name": "dummy4",
"file_type": "json",
"columns": [
{
"column_name": "Name",
"datafile": "first_names.txt"
},
{
"column_name": "Date",
"datafile": "dates.txt"
},
{
"column_name": "ID",
"datafile": "ids.txt"
},
{
"column_name": "Identifiers",
"__array_columns": [
{
"datafile": "ids.txt"
},
{
"columns": [
{
"column_name": "ID1",
"datafile": "ids.txt"
},
{
"column_name": "ID2",
"datafile": "ids.txt"
}
]
}
]
}
]
}
This configuration generates a file like this sample:
[{"Name": "Hank", "Date": "2004-05-22", "ID": "23432", "Identifiers": ["445", {"ID1": "11111", "ID2": "145546566345"}]},
{"Name": "Joe", "Date": "2000-03-12", "ID": "445", "Identifiers": ["11111", {"ID1": "145546566345", "ID2": "156765"}]}]
JSON file configuration allows only one level deep nested objects, that have to be defined in the __array_columns array
Whenever you need to add a new source .txt file in the data_files folder, just add it to your data_files folder.
The filename needs to correspond with the datafile value in your config.json file.
If running as a standalone CLI tool, the data_files folder is located here:
dummy_file_generator/data_files
When running as an imported package, the data_files folder is where ever you specify it to be
using the argument data_files_location.
Now you can use this new data file in your project setup in config.json file.
Pytest unit and performance tests are also a part of this repository.
You can install Pytest using pip install pytest
cd c:\dummy_file_generator\dummy_file_generatorpython -m pytest c:\dummy_file_generator\tests( In case when running from IDE, make sure the current working dir is set toc:\\dummy_file_generator)