Skip to content

cyborginc/cyborgdb-py

Repository files navigation

CyborgDB Python SDK

PyPI - Version PyPI - License PyPI - Python Version

The CyborgDB Python SDK provides a comprehensive client library for interacting with CyborgDB, the first Confidential Vector Database. This SDK enables you to perform encrypted vector operations including ingestion, search, and retrieval while maintaining end-to-end encryption of your vector embeddings. Built for Python applications, it offers seamless integration into modern Python applications and services.

This SDK provides an interface to cyborgdb-service which you will need to separately install and run in order to use the SDK. For more info, please see our docs.

Key Features

  • End-to-End Encryption: All vector operations maintain encryption with client-side keys
  • Zero-Trust Design: Novel architecture keeps confidential inference data secure
  • High Performance: GPU-accelerated indexing and retrieval with CUDA support
  • Familiar API: Easy integration with existing AI workflows
  • Flexible Indexing: Support for multiple index types (IVFFlat, IVFPQ, etc.) with customizable parameters

Getting Started

To get started in minutes, check out our Quickstart Guide.

Installation

  1. Install cyborgdb-service
# Install the CyborgDB Service
pip install cyborgdb-service

# Or via Docker
docker pull cyborginc/cyborgdb-service
  1. Install cyborgdb SDK:
# Install the CyborgDB Python SDK
pip install cyborgdb

Usage

from cyborgdb import Client

# Initialize the client
client = Client('https://localhost:8000', 'your-api-key')

# Generate a 32-byte encryption key
index_key = client.generate_key()

# Create an encrypted index
index = client.create_index(
    index_name='my-index', 
    index_key=index_key
)

# Add encrypted vector items
items = [
    {
        'id': 'doc1',
        'vector': [0.1] * 128,  # Replace with real embeddings
        'contents': 'Hello world!',
        'metadata': {'category': 'greeting', 'language': 'en'}
    },
    {
        'id': 'doc2',
        'vector': [0.1] * 128,  # Replace with real embeddings
        'contents': 'Bonjour le monde!',
        'metadata': {'category': 'greeting', 'language': 'fr'}
    }
]

index.upsert(items)

# Query the encrypted index
query_vector = [0.2] * 128  # 128 dimensions
results = index.query(query_vectors=query_vector,top_k=5)

# Print the results
for result in results:
    print(f"ID: {result['id']}, Distance: {result['distance']}")

Advanced Usage

Batch Queries

# Search with multiple query vectors simultaneously
query_vectors = [
    [0.1] * 128,
    [0.2] * 128
]

batch_results = index.query(query_vectors=query_vectors, top_k=5)

# Print the results (batch queries return list of lists)
for i, query_results in enumerate(batch_results):
    print(f"\nResults for query {i}:")
    for result in query_results:
        print(f"  ID: {result['id']}, Distance: {result['distance']}")

Metadata Filtering

# Search with metadata filters
query_vector = [0.1] * 128
results = index.query(
    query_vectors=query_vector,
    top_k=10,
    n_probes=1,
    greedy=False,
    filters={'category': 'greeting', 'language': 'en'},
    include=['distance', 'metadata', 'contents']
)

# Print the results
for result in results:
    print(f"ID: {result['id']}, Distance: {result['distance']}, Metadata: {result['metadata']}")

Documentation

For more information on CyborgDB, see the Cyborg Docs.

License

The CyborgDB Python SDK is licensed under the MIT License.