Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 24, 2025

📄 25,816% (258.16x) speedup for gradient_descent in src/numerical/optimization.py

⏱️ Runtime : 12.0 seconds 46.3 milliseconds (best of 95 runs)

📝 Explanation and details

The optimization dramatically improves performance by replacing nested loops with vectorized NumPy operations, achieving a 25815% speedup (from 12.0 seconds to 46.3 milliseconds).

Key optimizations applied:

  1. Vectorized predictions: Replaced the double nested loop for computing predictions with X.dot(weights), leveraging NumPy's optimized BLAS routines instead of Python loops.

  2. Vectorized gradient calculation: Eliminated another double nested loop by using X.T.dot(errors) / m, which computes the entire gradient vector in one operation.

  3. In-place weight updates: Used vectorized subtraction weights -= learning_rate * gradient instead of element-wise loops.

Why this is faster:

  • NumPy operations execute in optimized C code rather than interpreted Python loops
  • BLAS libraries provide highly optimized matrix operations that utilize CPU cache efficiently
  • Eliminates the overhead of millions of Python loop iterations (the profiler shows ~31M loop iterations in the original code)

Performance characteristics from tests:

  • Excellent for large-scale problems (1000+ samples, 50+ features) where the vectorization advantage is most pronounced
  • Maintains identical numerical behavior across all test cases (basic linear relationships, edge cases, large datasets)
  • Particularly beneficial for the typical machine learning workloads with moderate to high iteration counts (500-1000 iterations)

The optimization transforms an O(iterations × m × n) nested loop implementation into efficient matrix operations, making it suitable for production machine learning pipelines where gradient descent is often called repeatedly.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 35 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import numpy as np  # used for matrix operations

# imports
import pytest  # used for our unit tests
from src.numerical.optimization import gradient_descent

# unit tests

# 1. Basic Test Cases


def test_basic_single_feature_perfect_fit():
    # Single feature, perfect fit: y = 2*x
    X = np.array([[1], [2], [3], [4]], dtype=float)
    y = np.array([2, 4, 6, 8], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=500)
    weights = codeflash_output


def test_basic_two_features_perfect_fit():
    # Two features, perfect fit: y = 1*x1 + 3*x2
    X = np.array([[1, 2], [2, 1], [3, 0], [0, 3]], dtype=float)
    y = np.array(
        [1 * 1 + 3 * 2, 1 * 2 + 3 * 1, 1 * 3 + 3 * 0, 1 * 0 + 3 * 3], dtype=float
    )
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=1000)
    weights = codeflash_output


def test_basic_nonzero_initial_weights():
    # The function always starts at zero weights, but test with nonzero y
    X = np.array([[1], [2]], dtype=float)
    y = np.array([2, 4], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=300)
    weights = codeflash_output


def test_basic_learning_rate_effect():
    # Test that smaller learning rate converges slower
    X = np.array([[1], [2]], dtype=float)
    y = np.array([2, 4], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=50)
    weights_fast = codeflash_output
    codeflash_output = gradient_descent(X, y, learning_rate=0.001, iterations=50)
    weights_slow = codeflash_output


def test_basic_iterations_effect():
    # More iterations should improve convergence
    X = np.array([[1], [2]], dtype=float)
    y = np.array([2, 4], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=10)
    weights_few = codeflash_output
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=500)
    weights_many = codeflash_output


# 2. Edge Test Cases


def test_edge_zero_iterations():
    # Zero iterations should return initial weights (all zeros)
    X = np.array([[1, 2], [3, 4]], dtype=float)
    y = np.array([5, 11], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=0)
    weights = codeflash_output


def test_edge_zero_learning_rate():
    # Zero learning rate should result in no change from initial weights
    X = np.array([[1, 2], [3, 4]], dtype=float)
    y = np.array([5, 11], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.0, iterations=100)
    weights = codeflash_output


def test_edge_nan_in_X():
    # NaN in X should propagate to weights
    X = np.array([[np.nan, 2], [3, 4]], dtype=float)
    y = np.array([5, 11], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=10)
    weights = codeflash_output


def test_edge_inf_in_X():
    # Inf in X should propagate to weights
    X = np.array([[np.inf, 2], [3, 4]], dtype=float)
    y = np.array([5, 11], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=10)
    weights = codeflash_output


def test_edge_negative_learning_rate():
    # Negative learning rate should cause weights to diverge from correct solution
    X = np.array([[1], [2]], dtype=float)
    y = np.array([2, 4], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=-0.01, iterations=100)
    weights = codeflash_output


def test_edge_zero_features():
    # X with zero features (n=0)
    X = np.empty((5, 0))
    y = np.array([1, 2, 3, 4, 5], dtype=float)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=10)
    weights = codeflash_output


def test_edge_all_zeros_X_y():
    # All zeros in X and y should result in zero weights
    X = np.zeros((4, 3))
    y = np.zeros(4)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=100)
    weights = codeflash_output


# 3. Large Scale Test Cases


def test_large_scale_many_samples():
    # Test with 1000 samples, 3 features, y = 2*x1 + 3*x2 + 4*x3
    np.random.seed(42)
    X = np.random.rand(1000, 3)
    true_weights = np.array([2, 3, 4])
    y = X @ true_weights
    codeflash_output = gradient_descent(X, y, learning_rate=0.05, iterations=500)
    weights = codeflash_output
    # Should be close to true_weights
    for i in range(3):
        pass


def test_large_scale_many_features():
    # Test with 50 features, 200 samples, random weights
    np.random.seed(123)
    X = np.random.rand(200, 50)
    true_weights = np.arange(1, 51)
    y = X @ true_weights
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=700)
    weights = codeflash_output


def test_large_scale_noisy_data():
    # Test with noise in y
    np.random.seed(321)
    X = np.random.rand(500, 5)
    true_weights = np.array([1, -2, 3, -4, 5])
    noise = np.random.normal(0, 0.1, size=500)
    y = X @ true_weights + noise
    codeflash_output = gradient_descent(X, y, learning_rate=0.02, iterations=800)
    weights = codeflash_output


def test_large_scale_high_iterations():
    # Test with high iteration count
    np.random.seed(456)
    X = np.random.rand(100, 10)
    true_weights = np.arange(10)
    y = X @ true_weights
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=1000)
    weights = codeflash_output


def test_large_scale_small_learning_rate():
    # Test with very small learning rate
    np.random.seed(789)
    X = np.random.rand(100, 5)
    true_weights = np.array([5, 4, 3, 2, 1])
    y = X @ true_weights
    codeflash_output = gradient_descent(X, y, learning_rate=1e-5, iterations=1000)
    weights = codeflash_output


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import numpy as np

# imports
import pytest  # used for our unit tests
from src.numerical.optimization import gradient_descent

# unit tests

# ------------------ BASIC TEST CASES ------------------


def test_gradient_descent_simple_linear():
    # Test with a simple linear relationship: y = 2x
    X = np.array([[1], [2], [3], [4]])
    y = np.array([2, 4, 6, 8])
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=500)
    weights = codeflash_output


def test_gradient_descent_multiple_features():
    # Test with two features: y = 3x1 + 5x2
    X = np.array([[1, 2], [2, 1], [3, 0], [0, 4]])
    y = np.array([13, 11, 9, 20])
    codeflash_output = gradient_descent(X, y, learning_rate=0.05, iterations=1000)
    weights = codeflash_output


def test_gradient_descent_zero_learning_rate():
    # Test with zero learning rate: weights should not change from zero
    X = np.array([[1, 2], [3, 4]])
    y = np.array([5, 11])
    codeflash_output = gradient_descent(X, y, learning_rate=0.0, iterations=100)
    weights = codeflash_output


def test_gradient_descent_one_iteration():
    # Test with one iteration: weights should update only once
    X = np.array([[1], [2]])
    y = np.array([2, 4])
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=1)
    weights = codeflash_output


# ------------------ EDGE TEST CASES ------------------


def test_gradient_descent_single_sample():
    # Test with only one sample
    X = np.array([[5, 7]])
    y = np.array([31])  # y = 2*5 + 3*7 = 10 + 21 = 31
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=100)
    weights = codeflash_output
    # With one sample, weights should fit perfectly
    expected_weights = np.array([2, 3])


def test_gradient_descent_single_feature():
    # Test with one feature and multiple samples
    X = np.array([[1], [2], [3]])
    y = np.array([2, 4, 6])
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=500)
    weights = codeflash_output


def test_gradient_descent_negative_learning_rate():
    # Test with negative learning rate: should diverge
    X = np.array([[1], [2]])
    y = np.array([2, 4])
    codeflash_output = gradient_descent(X, y, learning_rate=-0.1, iterations=10)
    weights = codeflash_output


def test_gradient_descent_zero_iterations():
    # Test with zero iterations: weights should be zero
    X = np.array([[1, 2], [3, 4]])
    y = np.array([5, 11])
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=0)
    weights = codeflash_output


def test_gradient_descent_all_zero_X():
    # Test with all features zero
    X = np.zeros((5, 3))
    y = np.array([1, 2, 3, 4, 5])
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=10)
    weights = codeflash_output


def test_gradient_descent_all_zero_y():
    # Test with all targets zero
    X = np.array([[1, 2], [3, 4]])
    y = np.zeros(2)
    codeflash_output = gradient_descent(X, y, learning_rate=0.1, iterations=100)
    weights = codeflash_output


def test_gradient_descent_high_learning_rate():
    # Test with very high learning rate: weights should diverge
    X = np.array([[1], [2]])
    y = np.array([2, 4])
    codeflash_output = gradient_descent(X, y, learning_rate=10, iterations=10)
    weights = codeflash_output


# ------------------ LARGE SCALE TEST CASES ------------------


def test_gradient_descent_large_scale():
    # Test with large dataset (500 samples, 10 features)
    np.random.seed(42)
    X = np.random.rand(500, 10)
    true_weights = np.arange(1, 11)  # [1, 2, ..., 10]
    y = X @ true_weights
    codeflash_output = gradient_descent(X, y, learning_rate=0.05, iterations=500)
    weights = codeflash_output


def test_gradient_descent_large_feature_count():
    # Test with many features (100 features, 50 samples)
    np.random.seed(123)
    X = np.random.rand(50, 100)
    true_weights = np.linspace(1, 2, 100)
    y = X @ true_weights
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=500)
    weights = codeflash_output


def test_gradient_descent_large_iterations():
    # Test with a reasonable large number of iterations
    X = np.array([[1], [2], [3], [4]])
    y = np.array([2, 4, 6, 8])
    codeflash_output = gradient_descent(X, y, learning_rate=0.05, iterations=1000)
    weights = codeflash_output


def test_gradient_descent_large_scale_random_targets():
    # Large scale with random targets (no correlation)
    np.random.seed(0)
    X = np.random.rand(1000, 5)
    y = np.random.rand(1000)
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=200)
    weights = codeflash_output


def test_gradient_descent_large_scale_performance():
    # Test performance on large data (timing test, not strict)
    import time

    np.random.seed(1234)
    X = np.random.rand(1000, 10)
    y = np.random.rand(1000)
    start = time.time()
    codeflash_output = gradient_descent(X, y, learning_rate=0.01, iterations=100)
    weights = codeflash_output
    elapsed = time.time() - start


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
from src.numerical.optimization import gradient_descent

To edit these changes git checkout codeflash/optimize-gradient_descent-midt1qzy and push.

Codeflash Static Badge

The optimization dramatically improves performance by **replacing nested loops with vectorized NumPy operations**, achieving a **25815% speedup** (from 12.0 seconds to 46.3 milliseconds).

**Key optimizations applied:**

1. **Vectorized predictions**: Replaced the double nested loop for computing predictions with `X.dot(weights)`, leveraging NumPy's optimized BLAS routines instead of Python loops.

2. **Vectorized gradient calculation**: Eliminated another double nested loop by using `X.T.dot(errors) / m`, which computes the entire gradient vector in one operation.

3. **In-place weight updates**: Used vectorized subtraction `weights -= learning_rate * gradient` instead of element-wise loops.

**Why this is faster:**
- NumPy operations execute in optimized C code rather than interpreted Python loops
- BLAS libraries provide highly optimized matrix operations that utilize CPU cache efficiently
- Eliminates the overhead of millions of Python loop iterations (the profiler shows ~31M loop iterations in the original code)

**Performance characteristics from tests:**
- Excellent for large-scale problems (1000+ samples, 50+ features) where the vectorization advantage is most pronounced
- Maintains identical numerical behavior across all test cases (basic linear relationships, edge cases, large datasets)
- Particularly beneficial for the typical machine learning workloads with moderate to high iteration counts (500-1000 iterations)

The optimization transforms an O(iterations × m × n) nested loop implementation into efficient matrix operations, making it suitable for production machine learning pipelines where gradient descent is often called repeatedly.
@codeflash-ai codeflash-ai bot requested a review from KRRT7 November 24, 2025 23:55
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Nov 24, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant