Skip to content

andleb/DistributionalAutoencodersScore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DistributionalAutoencodersScore

Official code repository for Distributional Autoencoders Know the Score, NeurIPS 2025.

Besides software from pypi installed via requirement.txt, this repository depends on the following packages, which can be installed from their respective GitHub repositories:

Their respective licenses are reproduced in the third_party_licenses folder.

Structure

  • data - datasets used in the experiments

  • exp - the experiments scripts and notebooks

    • Gaussian_score.ipynb - reproduces Figure 1
    • score_alignment.py - reproduces Table 1
    • MB.ipynb - reproduces Figure 2
    • MFEP_comparisons.py - reproduces Table 2 and Figures 6, 7
    • train_indep.py - trains the basic models for Table 3
    • train_swiss.py - trains the Swiss-roll models for Table 3
    • train_scurve.py - trains the S-curve models for Table 3
    • train_scurve.sh , train_indep.sh, train_swiss.sh - bash scripts to train the models for Table 3
    • Indep-deterministic.ipynb - reproduces Table 3
    • run_CRT_linear.py - performs the CRT experiment in Section 4.2
    • Indep-extra.ipynb - reproduces Table 6
  • utils - utility functions (load the module onto your path)

    • mfep_utils.py - utility functions for MFEP experiments
    • plot_utils.py - plotting utilities (some adapted from mlcolvar)

Citing

If you find this code useful in your research, please consider citing the paper:

@inproceedings{
leban2025distributionalautoencodersknowscore,
title={Distributional Autoencoders Know the Score},
author={Andrej Leban},
booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
year={2025},
url={https://neurips.cc/virtual/2025/poster/119870}
}