88{-# OPTIONS --cubical-compatible --safe #-}
99
1010open import Algebra.Bundles using (Monoid)
11+ open import Function using (_∘_)
1112
12- module Algebra.Properties.Monoid.Reasoning {o ℓ} (M : Monoid o ℓ) where
13+ module Algebra.Properties.Monoid {o ℓ} (M : Monoid o ℓ) where
1314
1415open Monoid M
1516 using (Carrier; _∙_; _≈_; setoid; isMagma; semigroup; ε; sym; identityˡ
@@ -22,33 +23,32 @@ private
2223 variable
2324 a b c d : Carrier
2425
25- module _ where
26- id-unique : ∀ a → (∀ b → b ∙ a ≈ b) → a ≈ ε
27- id-unique a b∙a≈b = trans (sym (identityˡ a)) (b∙a≈b ε)
26+ id-unique : ∀ a → (∀ b → b ∙ a ≈ b) → a ≈ ε
27+ id-unique a b∙a≈b = trans (sym (identityˡ a)) (b∙a≈b ε)
2828
29- id-comm : ∀ a → a ∙ ε ≈ ε ∙ a
30- id-comm a = trans (identityʳ a) (sym (identityˡ a))
29+ id-comm : ∀ a → a ∙ ε ≈ ε ∙ a
30+ id-comm a = trans (identityʳ a) (sym (identityˡ a))
3131
32- id-comm-sym : ∀ a → ε ∙ a ≈ a ∙ ε
33- id-comm-sym a = sym ( id-comm a)
32+ id-comm-sym : ∀ a → ε ∙ a ≈ a ∙ ε
33+ id-comm-sym = sym ∘ id-comm
3434
35- module _ {a b : Carrier} (a≈ε : a ≈ ε) where
35+ module _ (a≈ε : a ≈ ε) where
3636 elimʳ : ∀ b → b ∙ a ≈ b
37- elimʳ b = trans (∙-congˡ a≈ε) (identityʳ b)
37+ elimʳ = trans (∙-congˡ a≈ε) ∘ identityʳ
3838
3939 elimˡ : ∀ b → a ∙ b ≈ b
40- elimˡ b = trans (∙-congʳ a≈ε) (identityˡ b)
40+ elimˡ = trans (∙-congʳ a≈ε) ∘ identityˡ
4141
4242 introʳ : ∀ b → b ≈ b ∙ a
43- introʳ b = sym (elimʳ b)
43+ introʳ = sym ∘ elimʳ
4444
4545 introˡ : ∀ b → b ≈ a ∙ b
46- introˡ b = sym (elimˡ b)
46+ introˡ = sym ∘ elimˡ
4747
4848 introcenter : ∀ c → b ∙ c ≈ b ∙ (a ∙ c)
4949 introcenter c = trans (∙-congˡ (sym (identityˡ c))) (∙-congˡ (∙-congʳ (sym a≈ε)))
5050
51- module _ {a c : Carrier} (inv : a ∙ c ≈ ε) where
51+ module _ (inv : a ∙ c ≈ ε) where
5252
5353 cancelʳ : ∀ b → (b ∙ a) ∙ c ≈ b
5454 cancelʳ b = trans (assoc b a c) (trans (∙-congˡ inv) (identityʳ b))
@@ -57,14 +57,14 @@ module _ {a c : Carrier} (inv : a ∙ c ≈ ε) where
5757 cancelˡ b = trans (sym (assoc a c b)) (trans (∙-congʳ inv) (identityˡ b))
5858
5959 insertˡ : ∀ b → b ≈ a ∙ (c ∙ b)
60- insertˡ b = sym (cancelˡ b)
60+ insertˡ = sym ∘ cancelˡ
6161
6262 insertʳ : ∀ b → b ≈ (b ∙ a) ∙ c
63- insertʳ b = sym (cancelʳ b)
63+ insertʳ = sym ∘ cancelʳ
6464
6565 cancelInner : ∀ b d → (b ∙ a) ∙ (c ∙ d) ≈ b ∙ d
6666 cancelInner b d = trans (uv≈w⇒xu∙vy≈x∙wy inv b d) (∙-congˡ (identityˡ d))
6767
6868 insertInner : ∀ b d → b ∙ d ≈ (b ∙ a) ∙ (c ∙ d)
69- insertInner b d = sym (cancelInner b d)
69+ insertInner = λ b d → sym (cancelInner b d)
7070
0 commit comments