Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 9 additions & 12 deletions net.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,9 @@
from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F
import math

from torch.optim import lr_scheduler
from torch.autograd import Variable


def squash(x):
Expand Down Expand Up @@ -165,14 +162,14 @@ def forward(self, lengths, targets, size_average=True):

# Training settings
parser = argparse.ArgumentParser(description='CapsNet with MNIST')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=250, metavar='N',
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 64)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.01)')
help='learning rate (default: 0.001)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
Expand Down Expand Up @@ -241,7 +238,7 @@ def train(epoch):
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
100. * batch_idx / len(train_loader), loss.item()))

def test():
model.eval()
Expand All @@ -254,12 +251,12 @@ def test():

if args.with_reconstruction:
output, probs = model(data, target)
reconstruction_loss = F.mse_loss(output, data.view(-1, 784), size_average=False).data[0]
test_loss += loss_fn(probs, target, size_average=False).data[0]
reconstruction_loss = F.mse_loss(output, data.view(-1, 784), size_average=False).item()
test_loss += loss_fn(probs, target, size_average=False).item()
test_loss += reconstruction_alpha * reconstruction_loss
else:
output, probs = model(data)
test_loss += loss_fn(probs, target, size_average=False).data[0]
test_loss += loss_fn(probs, target, size_average=False).item()

pred = probs.data.max(1, keepdim=True)[1] # get the index of the max probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
Expand Down