|
| 1 | +# `K`-connected maps over a type, with respect to a subuniverse `K` |
| 2 | + |
| 3 | +```agda |
| 4 | +module orthogonal-factorization-systems.connected-maps-at-subuniverses-over-type where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import foundation.dependent-pair-types |
| 11 | +open import foundation.equivalences |
| 12 | +open import foundation.fundamental-theorem-of-identity-types |
| 13 | +open import foundation.structure-identity-principle |
| 14 | +open import foundation.subuniverses |
| 15 | +open import foundation.univalence |
| 16 | +open import foundation.universe-levels |
| 17 | +
|
| 18 | +open import foundation-core.function-types |
| 19 | +open import foundation-core.homotopies |
| 20 | +open import foundation-core.identity-types |
| 21 | +open import foundation-core.torsorial-type-families |
| 22 | +
|
| 23 | +open import orthogonal-factorization-systems.connected-maps-at-subuniverses |
| 24 | +``` |
| 25 | + |
| 26 | +</details> |
| 27 | + |
| 28 | +## Idea |
| 29 | + |
| 30 | +Given a [subuniverse](foundation.subuniverses.md) `K` we consider the type of |
| 31 | +`K`-[connected maps](orthogonal-factorization-systems.connected-maps-at-subuniverses.md) |
| 32 | +into a type `X`. I.e., the collection of types `A` |
| 33 | +[equipped](foundation.structure.md) with `K`-connected maps from `A` into `X`. |
| 34 | + |
| 35 | +## Definitions |
| 36 | + |
| 37 | +### The type of `K`-connected maps over a type |
| 38 | + |
| 39 | +```agda |
| 40 | +Subuniverse-Connected-Map : |
| 41 | + {l1 l2 l3 : Level} (l4 : Level) (K : subuniverse l1 l2) (A : UU l3) → |
| 42 | + UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ lsuc l4) |
| 43 | +Subuniverse-Connected-Map l4 K A = Σ (UU l4) (subuniverse-connected-map K A) |
| 44 | +
|
| 45 | +module _ |
| 46 | + {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) |
| 47 | + {A : UU l3} (f : Subuniverse-Connected-Map l4 K A) |
| 48 | + where |
| 49 | +
|
| 50 | + type-Subuniverse-Connected-Map : UU l4 |
| 51 | + type-Subuniverse-Connected-Map = pr1 f |
| 52 | +
|
| 53 | + subuniverse-connected-map-Subuniverse-Connected-Map : |
| 54 | + subuniverse-connected-map K A type-Subuniverse-Connected-Map |
| 55 | + subuniverse-connected-map-Subuniverse-Connected-Map = pr2 f |
| 56 | +
|
| 57 | + map-Subuniverse-Connected-Map : A → type-Subuniverse-Connected-Map |
| 58 | + map-Subuniverse-Connected-Map = |
| 59 | + map-subuniverse-connected-map K |
| 60 | + ( subuniverse-connected-map-Subuniverse-Connected-Map) |
| 61 | +
|
| 62 | + is-subuniverse-connected-map-Subuniverse-Connected-Map : |
| 63 | + is-subuniverse-connected-map K map-Subuniverse-Connected-Map |
| 64 | + is-subuniverse-connected-map-Subuniverse-Connected-Map = |
| 65 | + is-subuniverse-connected-map-subuniverse-connected-map K |
| 66 | + ( subuniverse-connected-map-Subuniverse-Connected-Map) |
| 67 | +``` |
| 68 | + |
| 69 | +## Properties |
| 70 | + |
| 71 | +### Characterization of equality |
| 72 | + |
| 73 | +```agda |
| 74 | +equiv-Subuniverse-Connected-Map : |
| 75 | + {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} → |
| 76 | + (f g : Subuniverse-Connected-Map l4 K A) → UU (l3 ⊔ l4) |
| 77 | +equiv-Subuniverse-Connected-Map K f g = |
| 78 | + Σ ( type-Subuniverse-Connected-Map K f ≃ type-Subuniverse-Connected-Map K g) |
| 79 | + ( λ e → |
| 80 | + map-equiv e ∘ map-Subuniverse-Connected-Map K f ~ |
| 81 | + map-Subuniverse-Connected-Map K g) |
| 82 | +
|
| 83 | +module _ |
| 84 | + {l1 l2 l3 l4 : Level} (K : subuniverse l1 l2) {A : UU l3} |
| 85 | + (f : Subuniverse-Connected-Map l4 K A) |
| 86 | + where |
| 87 | +
|
| 88 | + id-equiv-Subuniverse-Connected-Map : equiv-Subuniverse-Connected-Map K f f |
| 89 | + id-equiv-Subuniverse-Connected-Map = (id-equiv , refl-htpy) |
| 90 | +
|
| 91 | + abstract |
| 92 | + is-torsorial-equiv-Subuniverse-Connected-Map : |
| 93 | + is-torsorial (equiv-Subuniverse-Connected-Map K f) |
| 94 | + is-torsorial-equiv-Subuniverse-Connected-Map = |
| 95 | + is-torsorial-Eq-structure |
| 96 | + ( is-torsorial-equiv (type-Subuniverse-Connected-Map K f)) |
| 97 | + ( type-Subuniverse-Connected-Map K f , id-equiv) |
| 98 | + ( is-torsorial-htpy-subuniverse-connected-map K |
| 99 | + ( subuniverse-connected-map-Subuniverse-Connected-Map K f)) |
| 100 | +
|
| 101 | + equiv-eq-Subuniverse-Connected-Map : |
| 102 | + (g : Subuniverse-Connected-Map l4 K A) → |
| 103 | + f = g → equiv-Subuniverse-Connected-Map K f g |
| 104 | + equiv-eq-Subuniverse-Connected-Map .f refl = |
| 105 | + id-equiv-Subuniverse-Connected-Map |
| 106 | +
|
| 107 | + abstract |
| 108 | + is-equiv-equiv-eq-Subuniverse-Connected-Map : |
| 109 | + (g : Subuniverse-Connected-Map l4 K A) → |
| 110 | + is-equiv (equiv-eq-Subuniverse-Connected-Map g) |
| 111 | + is-equiv-equiv-eq-Subuniverse-Connected-Map = |
| 112 | + fundamental-theorem-id |
| 113 | + ( is-torsorial-equiv-Subuniverse-Connected-Map) |
| 114 | + ( equiv-eq-Subuniverse-Connected-Map) |
| 115 | +
|
| 116 | + extensionality-Subuniverse-Connected-Map : |
| 117 | + (g : Subuniverse-Connected-Map l4 K A) → |
| 118 | + (f = g) ≃ equiv-Subuniverse-Connected-Map K f g |
| 119 | + extensionality-Subuniverse-Connected-Map g = |
| 120 | + ( equiv-eq-Subuniverse-Connected-Map g , |
| 121 | + is-equiv-equiv-eq-Subuniverse-Connected-Map g) |
| 122 | +
|
| 123 | + eq-equiv-Subuniverse-Connected-Map : |
| 124 | + (g : Subuniverse-Connected-Map l4 K A) → |
| 125 | + equiv-Subuniverse-Connected-Map K f g → f = g |
| 126 | + eq-equiv-Subuniverse-Connected-Map g = |
| 127 | + map-inv-equiv (extensionality-Subuniverse-Connected-Map g) |
| 128 | +``` |
0 commit comments