Skip to content

Commit 708b9ea

Browse files
chore: Rename extension to extension-map and lift to lift-map (#1706)
1 parent 92d51e6 commit 708b9ea

15 files changed

+534
-432
lines changed

src/foundation/binary-functoriality-set-quotients.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -364,7 +364,7 @@ module _
364364
( map-hom-binary-hom-equivalence-relation R S T f))
365365
( h ∘ map-reflecting-map-equivalence-relation R qR))) ∘e
366366
( ( inv-equiv
367-
( equiv-postcomp-extension-surjection
367+
( equiv-postcomp-extension-map-surjection
368368
( map-reflecting-map-equivalence-relation R qR ,
369369
is-surjective-is-set-quotient R QR qR UqR)
370370
( ( quotient-map-hom-equivalence-relation S T) ∘

src/foundation/continuations.lagda.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -105,11 +105,11 @@ module _
105105
106106
is-extension-extend-continuation :
107107
(f : A → continuation R B) →
108-
is-extension unit-continuation f (extend-continuation f)
108+
is-extension-of-map unit-continuation f (extend-continuation f)
109109
is-extension-extend-continuation f = refl-htpy
110110
111111
extension-continuation :
112-
(f : A → continuation R B) → extension unit-continuation f
112+
(f : A → continuation R B) → extension-map unit-continuation f
113113
extension-continuation f =
114114
( extend-continuation f , is-extension-extend-continuation f)
115115
```

src/foundation/lifts-morphisms-arrows.lagda.md

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@ module _
108108
pr2 (pr2 coherence-triangle-lift-hom-arrow)
109109
110110
lift-codomain-lift-hom-arrow :
111-
lift (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α)
111+
lift-map (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α)
112112
lift-codomain-lift-hom-arrow =
113113
( map-codomain-lift-hom-arrow , coh-codomain-lift-hom-arrow)
114114
```
@@ -125,7 +125,7 @@ module _
125125
where
126126
127127
is-lift-hom-arrow-of-lift-codomain-hom-arrow :
128-
lift (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α) →
128+
lift-map (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α) →
129129
(A → B) → UU (l1 ⊔ l4 ⊔ l5 ⊔ l6)
130130
is-lift-hom-arrow-of-lift-codomain-hom-arrow (i , I) j =
131131
Σ ( coherence-hom-arrow f g j i)
@@ -141,7 +141,7 @@ module _
141141
( I)))
142142
143143
lift-hom-arrow-of-lift-codomain-hom-arrow :
144-
lift (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α) →
144+
lift-map (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α) →
145145
UU (l1 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6)
146146
lift-hom-arrow-of-lift-codomain-hom-arrow i =
147147
Σ (A → B) (is-lift-hom-arrow-of-lift-codomain-hom-arrow i)
@@ -161,7 +161,8 @@ module _
161161
where
162162
163163
compute-fiber-lift-codomain-lift-hom-arrow :
164-
(δ : lift (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α)) →
164+
(δ :
165+
lift-map (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α)) →
165166
fiber (lift-codomain-lift-hom-arrow f g h β α) δ ≃
166167
lift-hom-arrow-of-lift-codomain-hom-arrow f g h β α δ
167168
compute-fiber-lift-codomain-lift-hom-arrow (δ , Hδ) =
@@ -175,7 +176,7 @@ module _
175176
by
176177
equiv-tot
177178
( λ γ →
178-
extensionality-lift
179+
extensionality-lift-map
179180
( map-codomain-hom-arrow g h β)
180181
( map-codomain-hom-arrow f h α)
181182
( lift-codomain-lift-hom-arrow f g h β α γ)
@@ -250,7 +251,7 @@ module _
250251
(let Hβ = coh-hom-arrow g h β)
251252
(let Hα = coh-hom-arrow f h α)
252253
(iI@(i , I) :
253-
lift (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α))
254+
lift-map (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α))
254255
where
255256
256257
equiv-htpy-cone-is-lift-hom-arrow-of-lift-codomain-hom-arrow :

src/foundation/surjective-maps.lagda.md

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -822,16 +822,16 @@ module _
822822
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
823823
where
824824
825-
is-surjective-postcomp-extension-surjective-map :
825+
is-surjective-postcomp-extension-map-surjective-map :
826826
(f : A → B) (i : A → X) (g : X → Y) →
827827
is-surjective f → is-emb g →
828-
is-surjective (postcomp-extension f i g)
829-
is-surjective-postcomp-extension-surjective-map f i g H K (h , L) =
828+
is-surjective (postcomp-extension-map f i g)
829+
is-surjective-postcomp-extension-map-surjective-map f i g H K (h , L) =
830830
unit-trunc-Prop
831831
( ( j , N) ,
832-
( eq-htpy-extension f
832+
( eq-htpy-extension-map f
833833
( g ∘ i)
834-
( postcomp-extension f i g (j , N))
834+
( postcomp-extension-map f i g (j , N))
835835
( h , L)
836836
( M ,
837837
λ a →
@@ -858,23 +858,23 @@ module _
858858
N : i ~ (j ∘ f)
859859
N a = map-inv-is-equiv (K (i a) (j (f a))) (L a ∙ inv (M (f a)))
860860
861-
is-equiv-postcomp-extension-is-surjective :
861+
is-equiv-postcomp-extension-map-is-surjective :
862862
(f : A → B) (i : A → X) (g : X → Y) →
863863
is-surjective f → is-emb g →
864-
is-equiv (postcomp-extension f i g)
865-
is-equiv-postcomp-extension-is-surjective f i g H K =
864+
is-equiv (postcomp-extension-map f i g)
865+
is-equiv-postcomp-extension-map-is-surjective f i g H K =
866866
is-equiv-is-emb-is-surjective
867-
( is-surjective-postcomp-extension-surjective-map f i g H K)
868-
( is-emb-postcomp-extension f i g K)
867+
( is-surjective-postcomp-extension-map-surjective-map f i g H K)
868+
( is-emb-postcomp-extension-map f i g K)
869869
870-
equiv-postcomp-extension-surjection :
870+
equiv-postcomp-extension-map-surjection :
871871
(f : A ↠ B) (i : A → X) (g : X ↪ Y) →
872-
extension (map-surjection f) i ≃
873-
extension (map-surjection f) (map-emb g ∘ i)
874-
pr1 (equiv-postcomp-extension-surjection f i g) =
875-
postcomp-extension (map-surjection f) i (map-emb g)
876-
pr2 (equiv-postcomp-extension-surjection f i g) =
877-
is-equiv-postcomp-extension-is-surjective
872+
extension-map (map-surjection f) i ≃
873+
extension-map (map-surjection f) (map-emb g ∘ i)
874+
pr1 (equiv-postcomp-extension-map-surjection f i g) =
875+
postcomp-extension-map (map-surjection f) i (map-emb g)
876+
pr2 (equiv-postcomp-extension-map-surjection f i g) =
877+
is-equiv-postcomp-extension-map-is-surjective
878878
( map-surjection f)
879879
( i)
880880
( map-emb g)

src/foundation/universal-property-cartesian-morphisms-arrows.lagda.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -131,7 +131,8 @@ module _
131131
(l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6)
132132
has-unique-lifts-hom-arrow-Level l1 l2 =
133133
{A : UU l1} {A' : UU l2} (f : A → A') (α : hom-arrow f h) →
134-
(δ : lift (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α)) →
134+
(δ :
135+
lift-map (map-codomain-hom-arrow g h β) (map-codomain-hom-arrow f h α)) →
135136
is-contr (lift-hom-arrow-of-lift-codomain-hom-arrow f g h β α δ)
136137
137138
has-unique-lifts-hom-arrow : UUω

src/orthogonal-factorization-systems.lagda.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -16,6 +16,7 @@ open import orthogonal-factorization-systems.closed-modalities public
1616
open import orthogonal-factorization-systems.continuation-modalities public
1717
open import orthogonal-factorization-systems.double-lifts-families-of-elements public
1818
open import orthogonal-factorization-systems.double-negation-sheaves public
19+
open import orthogonal-factorization-systems.equality-extensions-dependent-maps public
1920
open import orthogonal-factorization-systems.equality-extensions-maps public
2021
open import orthogonal-factorization-systems.extensions-dependent-maps public
2122
open import orthogonal-factorization-systems.extensions-double-lifts-families-of-elements public
Lines changed: 190 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,190 @@
1+
# Equality of extensions of dependent maps
2+
3+
```agda
4+
module orthogonal-factorization-systems.equality-extensions-dependent-maps where
5+
```
6+
7+
<details><summary>Imports</summary>
8+
9+
```agda
10+
open import foundation.dependent-pair-types
11+
open import foundation.equivalences
12+
open import foundation.fundamental-theorem-of-identity-types
13+
open import foundation.homotopies
14+
open import foundation.homotopy-induction
15+
open import foundation.identity-types
16+
open import foundation.structure-identity-principle
17+
open import foundation.universe-levels
18+
open import foundation.whiskering-homotopies-composition
19+
20+
open import foundation-core.torsorial-type-families
21+
22+
open import orthogonal-factorization-systems.extensions-dependent-maps
23+
```
24+
25+
</details>
26+
27+
## Idea
28+
29+
We characterize equality of
30+
[extensions](orthogonal-factorization-systems.extensions-dependent-maps.md) of
31+
dependent maps.
32+
33+
## Definition
34+
35+
### Homotopies of extensions of dependent maps
36+
37+
```agda
38+
module _
39+
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B)
40+
{P : B → UU l3} (f : (x : A) → P (i x))
41+
where
42+
43+
coherence-htpy-extension-dependent-map :
44+
(e e' : extension-dependent-map i P f) →
45+
map-extension-dependent-map e ~ map-extension-dependent-map e' →
46+
UU (l1 ⊔ l3)
47+
coherence-htpy-extension-dependent-map e e' K =
48+
( is-extension-map-extension-dependent-map e ∙h (K ·r i)) ~
49+
( is-extension-map-extension-dependent-map e')
50+
51+
htpy-extension-dependent-map :
52+
(e e' : extension-dependent-map i P f) → UU (l1 ⊔ l2 ⊔ l3)
53+
htpy-extension-dependent-map e e' =
54+
Σ ( map-extension-dependent-map e ~ map-extension-dependent-map e')
55+
( coherence-htpy-extension-dependent-map e e')
56+
57+
refl-htpy-extension-dependent-map :
58+
(e : extension-dependent-map i P f) → htpy-extension-dependent-map e e
59+
pr1 (refl-htpy-extension-dependent-map e) = refl-htpy
60+
pr2 (refl-htpy-extension-dependent-map e) = right-unit-htpy
61+
```
62+
63+
### Homotopies of extensions with homotopies going the other way
64+
65+
```agda
66+
module _
67+
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B)
68+
{P : B → UU l3} (f : (x : A) → P (i x))
69+
where
70+
71+
coherence-htpy-extension-dependent-map' :
72+
(e e' : extension-dependent-map' i P f) →
73+
map-extension-dependent-map' e ~ map-extension-dependent-map' e' →
74+
UU (l1 ⊔ l3)
75+
coherence-htpy-extension-dependent-map' e e' K =
76+
( is-extension-map-extension-dependent-map' e) ~
77+
( K ·r i ∙h is-extension-map-extension-dependent-map' e')
78+
79+
htpy-extension-dependent-map' :
80+
(e e' : extension-dependent-map' i P f) → UU (l1 ⊔ l2 ⊔ l3)
81+
htpy-extension-dependent-map' e e' =
82+
Σ ( map-extension-dependent-map' e ~ map-extension-dependent-map' e')
83+
( coherence-htpy-extension-dependent-map' e e')
84+
85+
refl-htpy-extension-dependent-map' :
86+
(e : extension-dependent-map' i P f) → htpy-extension-dependent-map' e e
87+
pr1 (refl-htpy-extension-dependent-map' e) = refl-htpy
88+
pr2 (refl-htpy-extension-dependent-map' e) = refl-htpy
89+
```
90+
91+
## Properties
92+
93+
### Homotopies characterize equality
94+
95+
```agda
96+
module _
97+
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B)
98+
{P : B → UU l3} (f : (x : A) → P (i x))
99+
where
100+
101+
htpy-eq-extension-dependent-map :
102+
(e e' : extension-dependent-map i P f) →
103+
e = e' → htpy-extension-dependent-map i f e e'
104+
htpy-eq-extension-dependent-map e .e refl =
105+
refl-htpy-extension-dependent-map i f e
106+
107+
abstract
108+
is-torsorial-htpy-extension-dependent-map :
109+
(e : extension-dependent-map i P f) →
110+
is-torsorial (htpy-extension-dependent-map i f e)
111+
is-torsorial-htpy-extension-dependent-map e =
112+
is-torsorial-Eq-structure
113+
( is-torsorial-htpy (map-extension-dependent-map e))
114+
( map-extension-dependent-map e , refl-htpy)
115+
( is-torsorial-htpy
116+
( is-extension-map-extension-dependent-map e ∙h
117+
refl-htpy))
118+
119+
abstract
120+
is-equiv-htpy-eq-extension-dependent-map :
121+
(e e' : extension-dependent-map i P f) →
122+
is-equiv (htpy-eq-extension-dependent-map e e')
123+
is-equiv-htpy-eq-extension-dependent-map e =
124+
fundamental-theorem-id
125+
( is-torsorial-htpy-extension-dependent-map e)
126+
( htpy-eq-extension-dependent-map e)
127+
128+
extensionality-extension-dependent-map :
129+
(e e' : extension-dependent-map i P f) →
130+
(e = e') ≃ htpy-extension-dependent-map i f e e'
131+
pr1 (extensionality-extension-dependent-map e e') =
132+
htpy-eq-extension-dependent-map e e'
133+
pr2 (extensionality-extension-dependent-map e e') =
134+
is-equiv-htpy-eq-extension-dependent-map e e'
135+
136+
eq-htpy-extension-dependent-map :
137+
(e e' : extension-dependent-map i P f) →
138+
htpy-extension-dependent-map i f e e' → e = e'
139+
eq-htpy-extension-dependent-map e e' =
140+
map-inv-equiv (extensionality-extension-dependent-map e e')
141+
```
142+
143+
### Characterizing equality of extensions of dependent maps with homotopies going the other way
144+
145+
```agda
146+
module _
147+
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (i : A → B)
148+
{P : B → UU l3} (f : (x : A) → P (i x))
149+
where
150+
151+
htpy-eq-extension-dependent-map' :
152+
(e e' : extension-dependent-map' i P f) →
153+
e = e' → htpy-extension-dependent-map' i f e e'
154+
htpy-eq-extension-dependent-map' e .e refl =
155+
refl-htpy-extension-dependent-map' i f e
156+
157+
abstract
158+
is-torsorial-htpy-extension-dependent-map' :
159+
(e : extension-dependent-map' i P f) →
160+
is-torsorial (htpy-extension-dependent-map' i f e)
161+
is-torsorial-htpy-extension-dependent-map' e =
162+
is-torsorial-Eq-structure
163+
( is-torsorial-htpy (map-extension-dependent-map' e))
164+
( map-extension-dependent-map' e , refl-htpy)
165+
( is-torsorial-htpy
166+
( is-extension-map-extension-dependent-map' e))
167+
168+
abstract
169+
is-equiv-htpy-eq-extension-dependent-map' :
170+
(e e' : extension-dependent-map' i P f) →
171+
is-equiv (htpy-eq-extension-dependent-map' e e')
172+
is-equiv-htpy-eq-extension-dependent-map' e =
173+
fundamental-theorem-id
174+
( is-torsorial-htpy-extension-dependent-map' e)
175+
( htpy-eq-extension-dependent-map' e)
176+
177+
extensionality-extension-dependent-map' :
178+
(e e' : extension-dependent-map' i P f) →
179+
(e = e') ≃ (htpy-extension-dependent-map' i f e e')
180+
pr1 (extensionality-extension-dependent-map' e e') =
181+
htpy-eq-extension-dependent-map' e e'
182+
pr2 (extensionality-extension-dependent-map' e e') =
183+
is-equiv-htpy-eq-extension-dependent-map' e e'
184+
185+
eq-htpy-extension-dependent-map' :
186+
(e e' : extension-dependent-map' i P f) →
187+
htpy-extension-dependent-map' i f e e' → e = e'
188+
eq-htpy-extension-dependent-map' e e' =
189+
map-inv-equiv (extensionality-extension-dependent-map' e e')
190+
```

0 commit comments

Comments
 (0)