Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions apis/python/src/tiledb/vector_search/embeddings/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from .image_resnetv2_embedding import ImageResNetV2Embedding
from .langchain_embedding import LangChainEmbedding
from .object_embedding import ObjectEmbedding
from .ollama_embedding import OllamaEmbedding
from .random_embedding import RandomEmbedding
from .sentence_transformers_embedding import SentenceTransformersEmbedding
from .soma_geneptw_embedding import SomaGenePTwEmbedding
Expand All @@ -18,4 +19,5 @@
"LangChainEmbedding",
"SomaScGPTEmbedding",
"SomaSCVIEmbedding",
"OllamaEmbedding",
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
from typing import Dict, Optional, OrderedDict, Sequence, Union

import numpy as np

# from tiledb.vector_search.embeddings import ObjectEmbedding


class OllamaEmbedding:
"""
Embedding functions from Ollama.

This attempts to import the embedding_class from the ollama module.
"""

def __init__(
self,
dimensions: int,
embedding_class: str = "embed", # really it's the method
embedding_kwargs: Optional[Dict] = None,
):
self.dim_num = dimensions
self.embedding_class = embedding_class
self.embedding_kwargs = embedding_kwargs

def init_kwargs(self) -> Dict:
return {
"dimensions": self.dim_num,
"embedding_class": self.embedding_class,
"embedding_kwargs": self.embedding_kwargs,
}

def dimensions(self) -> int:
return self.dim_num

def vector_type(self) -> np.dtype:
return np.float32

def load(self) -> None:
import importlib

try:
embeddings_module = importlib.import_module("ollama")
embedding_method_ = getattr(embeddings_module, self.embedding_class)
self.embedding = embedding_method_(**self.embedding_kwargs)
except ImportError as e:
print(e)

def embed(self, objects: Union[str, Sequence[str]]) -> np.ndarray:
return np.array(self.embedding(input=objects).embeddings, dtype=np.float32)
68 changes: 68 additions & 0 deletions apis/python/test/test_ingestion.py
Original file line number Diff line number Diff line change
Expand Up @@ -2012,6 +2012,74 @@ def test_ivf_flat_taskgraph_query(tmp_path):
assert accuracy(result, gt_i) > MINIMUM_ACCURACY


def test_ollama_embedding():
"""Test OllamaEmbedding class with mocked ollama library."""
from unittest.mock import MagicMock
from unittest.mock import Mock
from unittest.mock import patch

from tiledb.vector_search.embeddings import OllamaEmbedding

# Test initialization
dimensions = 384
embedding_class = "embed"
embedding_kwargs = {"model": "nomic-embed-text"}

embedding = OllamaEmbedding(
dimensions=dimensions,
embedding_class=embedding_class,
embedding_kwargs=embedding_kwargs,
)

# Test dimensions() method
assert embedding.dimensions() == dimensions

# Test vector_type() method
assert embedding.vector_type() == np.float32

# Test init_kwargs() method
init_kwargs = embedding.init_kwargs()
assert init_kwargs["dimensions"] == dimensions
assert init_kwargs["embedding_class"] == embedding_class
assert init_kwargs["embedding_kwargs"] == embedding_kwargs

# Mock the ollama module
mock_ollama = MagicMock()

# Create a mock embedding result with the expected structure
mock_embed_result = Mock()
mock_embed_result.embeddings = [
[0.1] * dimensions, # 384 dimensions for first text
[0.2] * dimensions, # 384 dimensions for second text
]

# Create a mock callable that will be returned by embed(**kwargs)
mock_callable = Mock(return_value=mock_embed_result)

# Mock the embed function to return our callable when called with **embedding_kwargs
mock_ollama.embed = Mock(return_value=mock_callable)

# Patch the importlib.import_module to return our mock
with patch("importlib.import_module", return_value=mock_ollama):
# Test load() method
embedding.load()

# Test embed() method with multiple texts
test_texts = ["hello world", "test document"]
result = embedding.embed(test_texts)

# Verify the result
assert isinstance(result, np.ndarray)
assert result.dtype == np.float32
assert result.shape == (2, dimensions)

# Verify embed was called with correct kwargs during load
mock_ollama.embed.assert_called_once_with(model="nomic-embed-text")

# Verify the callable was called with correct input parameter
mock_callable.assert_called_once_with(input=test_texts)


def test_dimensions_parameter_override(tmp_path):
"""
Test the dimensions parameter functionality with TileDB array input.
Expand Down