|
| 1 | +using Microsoft.ML.OnnxRuntime.Tensors; |
| 2 | +using NumSharp; |
| 3 | +using OnnxStack.Core; |
| 4 | +using OnnxStack.StableDiffusion.Config; |
| 5 | +using OnnxStack.StableDiffusion.Enums; |
| 6 | +using OnnxStack.StableDiffusion.Helpers; |
| 7 | +using System; |
| 8 | +using System.Collections.Generic; |
| 9 | +using System.Linq; |
| 10 | + |
| 11 | +namespace OnnxStack.StableDiffusion.Schedulers |
| 12 | +{ |
| 13 | + public sealed class EulerScheduler : SchedulerBase |
| 14 | + { |
| 15 | + private float[] _sigmas; |
| 16 | + |
| 17 | + /// <summary> |
| 18 | + /// Initializes a new instance of the <see cref="EulerScheduler"/> class. |
| 19 | + /// </summary> |
| 20 | + /// <param name="stableDiffusionOptions">The stable diffusion options.</param> |
| 21 | + public EulerScheduler() : this(new SchedulerOptions()) { } |
| 22 | + |
| 23 | + /// <summary> |
| 24 | + /// Initializes a new instance of the <see cref="EulerScheduler"/> class. |
| 25 | + /// </summary> |
| 26 | + /// <param name="stableDiffusionOptions">The stable diffusion options.</param> |
| 27 | + /// <param name="schedulerOptions">The scheduler options.</param> |
| 28 | + public EulerScheduler(SchedulerOptions schedulerOptions) : base(schedulerOptions) { } |
| 29 | + |
| 30 | + |
| 31 | + /// <summary> |
| 32 | + /// Initializes this instance. |
| 33 | + /// </summary> |
| 34 | + protected override void Initialize() |
| 35 | + { |
| 36 | + _sigmas = null; |
| 37 | + |
| 38 | + var betas = GetBetaSchedule(); |
| 39 | + var alphas = betas.Select(beta => 1.0f - beta); |
| 40 | + var alphaCumProd = alphas.Select((alpha, i) => alphas.Take(i + 1).Aggregate((a, b) => a * b)); |
| 41 | + _sigmas = alphaCumProd |
| 42 | + .Select(alpha_prod => (float)Math.Sqrt((1 - alpha_prod) / alpha_prod)) |
| 43 | + .ToArray(); |
| 44 | + |
| 45 | + var initNoiseSigma = GetInitNoiseSigma(_sigmas); |
| 46 | + SetInitNoiseSigma(initNoiseSigma); |
| 47 | + } |
| 48 | + |
| 49 | + |
| 50 | + /// <summary> |
| 51 | + /// Sets the timesteps. |
| 52 | + /// </summary> |
| 53 | + /// <returns></returns> |
| 54 | + protected override int[] SetTimesteps() |
| 55 | + { |
| 56 | + var sigmas = _sigmas.ToArray(); |
| 57 | + var timesteps = GetTimesteps(); |
| 58 | + var log_sigmas = np.log(sigmas).ToArray<float>(); |
| 59 | + var range = np.arange(0, (float)_sigmas.Length).ToArray<float>(); |
| 60 | + |
| 61 | + // TODO: Implement "interpolation_type" |
| 62 | + var interpolation_type = "linear"; |
| 63 | + sigmas = interpolation_type == "log_linear" |
| 64 | + ? np.exp(np.linspace(np.log(sigmas.Last()), np.log(sigmas.First()), timesteps.Length + 1)).ToArray<float>() |
| 65 | + : Interpolate(timesteps, range, _sigmas); |
| 66 | + |
| 67 | + if (Options.UseKarrasSigmas) |
| 68 | + { |
| 69 | + sigmas = ConvertToKarras(sigmas); |
| 70 | + timesteps = SigmaToTimestep(sigmas, log_sigmas); |
| 71 | + } |
| 72 | + |
| 73 | + _sigmas = sigmas |
| 74 | + .Append(0.000f) |
| 75 | + .ToArray(); |
| 76 | + |
| 77 | + return timesteps.Select(x => (int)x) |
| 78 | + .OrderByDescending(x => x) |
| 79 | + .ToArray(); |
| 80 | + } |
| 81 | + |
| 82 | + |
| 83 | + /// <summary> |
| 84 | + /// Scales the input. |
| 85 | + /// </summary> |
| 86 | + /// <param name="sample">The sample.</param> |
| 87 | + /// <param name="timestep">The timestep.</param> |
| 88 | + /// <returns></returns> |
| 89 | + public override DenseTensor<float> ScaleInput(DenseTensor<float> sample, int timestep) |
| 90 | + { |
| 91 | + // Get step index of timestep from TimeSteps |
| 92 | + int stepIndex = Timesteps.IndexOf(timestep); |
| 93 | + |
| 94 | + // Get sigma at stepIndex |
| 95 | + var sigma = _sigmas[stepIndex]; |
| 96 | + sigma = (float)Math.Sqrt(Math.Pow(sigma, 2) + 1); |
| 97 | + |
| 98 | + // Divide sample tensor shape {2,4,(H/8),(W/8)} by sigma |
| 99 | + return sample.DivideTensorByFloat(sigma); |
| 100 | + } |
| 101 | + |
| 102 | + |
| 103 | + /// <summary> |
| 104 | + /// Processes a inference step for the specified model output. |
| 105 | + /// </summary> |
| 106 | + /// <param name="modelOutput">The model output.</param> |
| 107 | + /// <param name="timestep">The timestep.</param> |
| 108 | + /// <param name="sample">The sample.</param> |
| 109 | + /// <param name="order">The order.</param> |
| 110 | + /// <returns></returns> |
| 111 | + public override DenseTensor<float> Step(DenseTensor<float> modelOutput, int timestep, DenseTensor<float> sample, int order = 4) |
| 112 | + { |
| 113 | + // TODO: Implement "extended settings for scheduler types" |
| 114 | + float s_churn = 0f; |
| 115 | + float s_tmin = 0f; |
| 116 | + float s_tmax = float.PositiveInfinity; |
| 117 | + float s_noise = 1f; |
| 118 | + |
| 119 | + var stepIndex = Timesteps.IndexOf(timestep); |
| 120 | + float sigma = _sigmas[stepIndex]; |
| 121 | + |
| 122 | + float gamma = s_tmin <= sigma && sigma <= s_tmax ? (float)Math.Min(s_churn / (_sigmas.Length - 1f), Math.Sqrt(2.0f) - 1.0f) : 0f; |
| 123 | + var noise = CreateRandomSample(modelOutput.Dimensions); |
| 124 | + var epsilon = noise.MultipleTensorByFloat(s_noise); |
| 125 | + float sigmaHat = sigma * (1.0f + gamma); |
| 126 | + |
| 127 | + if (gamma > 0) |
| 128 | + sample = sample.AddTensors(epsilon.MultipleTensorByFloat((float)Math.Sqrt(Math.Pow(sigmaHat, 2f) - Math.Pow(sigma, 2f)))); |
| 129 | + |
| 130 | + |
| 131 | + // 1. compute predicted original sample (x_0) from sigma-scaled predicted noise |
| 132 | + var predOriginalSample = Options.PredictionType != PredictionType.Epsilon |
| 133 | + ? GetPredictedSample(modelOutput, sample, sigma) |
| 134 | + : sample.SubtractTensors(modelOutput.MultipleTensorByFloat(sigmaHat)); |
| 135 | + |
| 136 | + |
| 137 | + // 2. Convert to an ODE derivative |
| 138 | + var derivative = sample |
| 139 | + .SubtractTensors(predOriginalSample) |
| 140 | + .DivideTensorByFloat(sigmaHat); |
| 141 | + |
| 142 | + var delta = _sigmas[stepIndex + 1] - sigmaHat; |
| 143 | + return sample.AddTensors(derivative.MultipleTensorByFloat(delta)); |
| 144 | + } |
| 145 | + |
| 146 | + |
| 147 | + /// <summary> |
| 148 | + /// Adds noise to the sample. |
| 149 | + /// </summary> |
| 150 | + /// <param name="originalSamples">The original samples.</param> |
| 151 | + /// <param name="noise">The noise.</param> |
| 152 | + /// <param name="timesteps">The timesteps.</param> |
| 153 | + /// <returns></returns> |
| 154 | + public override DenseTensor<float> AddNoise(DenseTensor<float> originalSamples, DenseTensor<float> noise, IReadOnlyList<int> timesteps) |
| 155 | + { |
| 156 | + // Ref: https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py#L389 |
| 157 | + var sigma = timesteps |
| 158 | + .Select(x => Timesteps.IndexOf(x)) |
| 159 | + .Select(x => _sigmas[x]) |
| 160 | + .Max(); |
| 161 | + |
| 162 | + return noise |
| 163 | + .MultipleTensorByFloat(sigma) |
| 164 | + .AddTensors(originalSamples); |
| 165 | + } |
| 166 | + |
| 167 | + |
| 168 | + /// <summary> |
| 169 | + /// Releases unmanaged and - optionally - managed resources. |
| 170 | + /// </summary> |
| 171 | + /// <param name="disposing"><c>true</c> to release both managed and unmanaged resources; <c>false</c> to release only unmanaged resources.</param> |
| 172 | + protected override void Dispose(bool disposing) |
| 173 | + { |
| 174 | + _sigmas = null; |
| 175 | + base.Dispose(disposing); |
| 176 | + } |
| 177 | + } |
| 178 | +} |
0 commit comments