|
| 1 | +using Microsoft.ML.OnnxRuntime.Tensors; |
| 2 | +using OnnxStack.StableDiffusion.Config; |
| 3 | +using OnnxStack.StableDiffusion.Enums; |
| 4 | +using OnnxStack.StableDiffusion.Helpers; |
| 5 | +using System; |
| 6 | +using System.Collections.Generic; |
| 7 | +using System.Linq; |
| 8 | + |
| 9 | +namespace OnnxStack.StableDiffusion.Schedulers |
| 10 | +{ |
| 11 | + internal class DDIMScheduler : SchedulerBase |
| 12 | + { |
| 13 | + private float[] _alphasCumProd; |
| 14 | + private float _finalAlphaCumprod; |
| 15 | + |
| 16 | + /// <summary> |
| 17 | + /// Initializes a new instance of the <see cref="DDIMScheduler"/> class. |
| 18 | + /// </summary> |
| 19 | + /// <param name="stableDiffusionOptions">The stable diffusion options.</param> |
| 20 | + public DDIMScheduler() : this(new SchedulerOptions()) { } |
| 21 | + |
| 22 | + /// <summary> |
| 23 | + /// Initializes a new instance of the <see cref="DDIMScheduler"/> class. |
| 24 | + /// </summary> |
| 25 | + /// <param name="stableDiffusionOptions">The stable diffusion options.</param> |
| 26 | + /// <param name="schedulerOptions">The scheduler options.</param> |
| 27 | + public DDIMScheduler(SchedulerOptions options) : base(options) { } |
| 28 | + |
| 29 | + |
| 30 | + /// <summary> |
| 31 | + /// Initializes this instance. |
| 32 | + /// </summary> |
| 33 | + protected override void Initialize() |
| 34 | + { |
| 35 | + _alphasCumProd = null; |
| 36 | + |
| 37 | + var betas = GetBetaSchedule(); |
| 38 | + var alphas = betas.Select(beta => 1.0f - beta); |
| 39 | + _alphasCumProd = alphas |
| 40 | + .Select((alpha, i) => alphas.Take(i + 1).Aggregate((a, b) => a * b)) |
| 41 | + .ToArray(); |
| 42 | + |
| 43 | + bool setAlphaToOne = true; |
| 44 | + _finalAlphaCumprod = setAlphaToOne |
| 45 | + ? 1.0f |
| 46 | + : _alphasCumProd.First(); |
| 47 | + |
| 48 | + SetInitNoiseSigma(1.0f); |
| 49 | + } |
| 50 | + |
| 51 | + |
| 52 | + /// <summary> |
| 53 | + /// Sets the timesteps. |
| 54 | + /// </summary> |
| 55 | + /// <returns></returns> |
| 56 | + protected override int[] SetTimesteps() |
| 57 | + { |
| 58 | + // Create timesteps based on the specified strategy |
| 59 | + var timesteps = GetTimesteps(); |
| 60 | + return timesteps |
| 61 | + .Select(x => (int)x) |
| 62 | + .OrderByDescending(x => x) |
| 63 | + .ToArray(); |
| 64 | + } |
| 65 | + |
| 66 | + |
| 67 | + /// <summary> |
| 68 | + /// Scales the input. |
| 69 | + /// </summary> |
| 70 | + /// <param name="sample">The sample.</param> |
| 71 | + /// <param name="timestep">The timestep.</param> |
| 72 | + /// <returns></returns> |
| 73 | + public override DenseTensor<float> ScaleInput(DenseTensor<float> sample, int timestep) |
| 74 | + { |
| 75 | + return sample; |
| 76 | + } |
| 77 | + |
| 78 | + |
| 79 | + /// <summary> |
| 80 | + /// Processes a inference step for the specified model output. |
| 81 | + /// </summary> |
| 82 | + /// <param name="modelOutput">The model output.</param> |
| 83 | + /// <param name="timestep">The timestep.</param> |
| 84 | + /// <param name="sample">The sample.</param> |
| 85 | + /// <param name="order">The order.</param> |
| 86 | + /// <returns></returns> |
| 87 | + /// <exception cref="System.ArgumentException">Invalid prediction_type: {SchedulerOptions.PredictionType}</exception> |
| 88 | + /// <exception cref="System.NotImplementedException">DDIMScheduler Thresholding currently not implemented</exception> |
| 89 | + public override DenseTensor<float> Step(DenseTensor<float> modelOutput, int timestep, DenseTensor<float> sample, int order = 4) |
| 90 | + { |
| 91 | + //# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf |
| 92 | + //# Ideally, read DDIM paper in-detail understanding |
| 93 | + |
| 94 | + //# Notation (<variable name> -> <name in paper> |
| 95 | + //# - pred_noise_t -> e_theta(x_t, t) |
| 96 | + //# - pred_original_sample -> f_theta(x_t, t) or x_0 |
| 97 | + //# - std_dev_t -> sigma_t |
| 98 | + //# - eta -> η |
| 99 | + //# - pred_sample_direction -> "direction pointing to x_t" |
| 100 | + //# - pred_prev_sample -> "x_t-1" |
| 101 | + |
| 102 | + int currentTimestep = timestep; |
| 103 | + int previousTimestep = GetPreviousTimestep(currentTimestep); |
| 104 | + |
| 105 | + //# 1. compute alphas, betas |
| 106 | + float alphaProdT = _alphasCumProd[currentTimestep]; |
| 107 | + float alphaProdTPrev = previousTimestep >= 0 ? _alphasCumProd[previousTimestep] : _finalAlphaCumprod; |
| 108 | + float betaProdT = 1f - alphaProdT; |
| 109 | + |
| 110 | + |
| 111 | + //# 2. compute predicted original sample from predicted noise also called |
| 112 | + //# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf |
| 113 | + DenseTensor<float> predEpsilon = null; |
| 114 | + DenseTensor<float> predOriginalSample = null; |
| 115 | + if (Options.PredictionType == PredictionType.Epsilon) |
| 116 | + { |
| 117 | + var sampleBeta = sample.SubtractTensors(modelOutput.MultipleTensorByFloat((float)Math.Sqrt(betaProdT))); |
| 118 | + predOriginalSample = sampleBeta.DivideTensorByFloat((float)Math.Sqrt(alphaProdT)); |
| 119 | + predEpsilon = modelOutput; |
| 120 | + } |
| 121 | + else if (Options.PredictionType == PredictionType.Sample) |
| 122 | + { |
| 123 | + predOriginalSample = modelOutput; |
| 124 | + predEpsilon = sample.SubtractTensors(predOriginalSample |
| 125 | + .MultipleTensorByFloat((float)Math.Sqrt(alphaProdT))) |
| 126 | + .DivideTensorByFloat((float)Math.Sqrt(betaProdT)); |
| 127 | + } |
| 128 | + else if (Options.PredictionType == PredictionType.VariablePrediction) |
| 129 | + { |
| 130 | + var alphaSqrt = (float)Math.Sqrt(alphaProdT); |
| 131 | + var betaSqrt = (float)Math.Sqrt(betaProdT); |
| 132 | + predOriginalSample = sample |
| 133 | + .MultipleTensorByFloat(alphaSqrt) |
| 134 | + .SubtractTensors(modelOutput.MultipleTensorByFloat(betaSqrt)); |
| 135 | + predEpsilon = modelOutput |
| 136 | + .MultipleTensorByFloat(alphaSqrt) |
| 137 | + .AddTensors(sample.MultipleTensorByFloat(betaSqrt)); |
| 138 | + } |
| 139 | + |
| 140 | + |
| 141 | + //# 3. Clip or threshold "predicted x_0" |
| 142 | + if (Options.Thresholding) |
| 143 | + { |
| 144 | + // TODO: |
| 145 | + // predOriginalSample = ThresholdSample(predOriginalSample); |
| 146 | + } |
| 147 | + else if (Options.ClipSample) |
| 148 | + { |
| 149 | + predOriginalSample = predOriginalSample.Clip(-Options.ClipSampleRange, Options.ClipSampleRange); |
| 150 | + } |
| 151 | + |
| 152 | + |
| 153 | + //# 4. compute variance: "sigma_t(η)" -> see formula (16) |
| 154 | + //# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) |
| 155 | + var eta = 0f; |
| 156 | + var variance = GetVariance(currentTimestep, previousTimestep); |
| 157 | + var stdDevT = eta * (float)Math.Sqrt(variance); |
| 158 | + |
| 159 | + var useClippedModelOutput = false; |
| 160 | + if (useClippedModelOutput) |
| 161 | + { |
| 162 | + //# the pred_epsilon is always re-derived from the clipped x_0 in Glide |
| 163 | + predEpsilon = sample |
| 164 | + .SubtractTensors(predOriginalSample.MultipleTensorByFloat((float)Math.Sqrt(alphaProdT))) |
| 165 | + .DivideTensorByFloat((float)Math.Sqrt(betaProdT)); |
| 166 | + } |
| 167 | + |
| 168 | + |
| 169 | + //# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf |
| 170 | + var predSampleDirection = predEpsilon.MultipleTensorByFloat((float)Math.Sqrt(1f - alphaProdTPrev - Math.Pow(stdDevT, 2f))); |
| 171 | + |
| 172 | + |
| 173 | + //# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf |
| 174 | + var prevSample = predSampleDirection.AddTensors(predOriginalSample.MultipleTensorByFloat((float)Math.Sqrt(alphaProdTPrev))); |
| 175 | + |
| 176 | + if (eta > 0) |
| 177 | + prevSample = prevSample.AddTensors(CreateRandomSample(modelOutput.Dimensions).MultipleTensorByFloat(stdDevT)); |
| 178 | + |
| 179 | + return prevSample; |
| 180 | + } |
| 181 | + |
| 182 | + |
| 183 | + /// <summary> |
| 184 | + /// Adds noise to the sample. |
| 185 | + /// </summary> |
| 186 | + /// <param name="originalSamples">The original samples.</param> |
| 187 | + /// <param name="noise">The noise.</param> |
| 188 | + /// <param name="timesteps">The timesteps.</param> |
| 189 | + /// <returns></returns> |
| 190 | + public override DenseTensor<float> AddNoise(DenseTensor<float> originalSamples, DenseTensor<float> noise, IReadOnlyList<int> timesteps) |
| 191 | + { |
| 192 | + // Ref: https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py#L456 |
| 193 | + int timestep = timesteps[0]; |
| 194 | + float alphaProd = _alphasCumProd[timestep]; |
| 195 | + float sqrtAlpha = (float)Math.Sqrt(alphaProd); |
| 196 | + float sqrtOneMinusAlpha = (float)Math.Sqrt(1.0f - alphaProd); |
| 197 | + |
| 198 | + return noise |
| 199 | + .MultipleTensorByFloat(sqrtOneMinusAlpha) |
| 200 | + .AddTensors(originalSamples.MultipleTensorByFloat(sqrtAlpha)); |
| 201 | + } |
| 202 | + |
| 203 | + |
| 204 | + /// <summary> |
| 205 | + /// Gets the variance. |
| 206 | + /// </summary> |
| 207 | + /// <param name="timestep">The t.</param> |
| 208 | + /// <param name="predictedVariance">The predicted variance.</param> |
| 209 | + /// <returns></returns> |
| 210 | + private float GetVariance(int timestep, int prevTimestep) |
| 211 | + { |
| 212 | + float alphaProdT = _alphasCumProd[timestep]; |
| 213 | + float alphaProdTPrev = prevTimestep >= 0 |
| 214 | + ? _alphasCumProd[timestep] |
| 215 | + : _finalAlphaCumprod; |
| 216 | + |
| 217 | + float betaProdT = 1f - alphaProdT; |
| 218 | + float betaProdTPrev = 1f - alphaProdTPrev; |
| 219 | + float variance = (betaProdTPrev / betaProdT) * (1f - alphaProdT / alphaProdTPrev); |
| 220 | + return variance; |
| 221 | + } |
| 222 | + |
| 223 | + |
| 224 | + protected override void Dispose(bool disposing) |
| 225 | + { |
| 226 | + _alphasCumProd = null; |
| 227 | + base.Dispose(disposing); |
| 228 | + } |
| 229 | + } |
| 230 | +} |
0 commit comments