Skeleton project for RAG/LLM orchestration inspired by the anomaly-detector implementation.
Quick start
- poetry run python tools/pas_estimate.py
Local development (quick)
- Install dependencies (Poetry):
poetry install- Run tests:
poetry run pytest -q- Start the FastAPI app locally (set environment variables as needed):
export VECTOR_STORE_TYPE=opensearch
export OPENSEARCH_ENDPOINT=https://your-opensearch-endpoint
export AWS_REGION=us-west-2
export S3_DATA_BUCKET=your-dev-bucket
poetry run uvicorn src.rag_api.app:app --reload- Use the checklist updater CLI to list/mark items:
# List tasks
python scripts/update_checklist.py --file checklist.md --list
# Mark a task by substring
python scripts/update_checklist.py --file checklist.md --mark "Initialize Poetry project"
# Mark by index (1-based)
python scripts/update_checklist.py --file checklist.md --index 3Project structure
Docker
Build image:
docker build -t answer-architect:local .Run container (example):
docker run --rm -p 8000:8000 -e AWS_REGION=us-west-2 -e VECTOR_STORE_TYPE=opensearch answer-architect:localUnit tests in tests/ are designed to run quickly and use lightweight fakes for heavy external
dependencies (OpenSearch, boto3, SentenceTransformers). Integration tests that exercise real
services should be placed under tests/integration/ and run in a CI job or developer environment
that installs the real dependencies.
See docs/TESTING.md for more details.