@@ -57,10 +57,10 @@ for p in 1.1:0.1:100.0
5757 @test ForwardDiff. derivative (g, p) ≈ 1 / (2 * sqrt (p))
5858end
5959
60- u0 = (1.0 , 20.0 )
60+ tspan = (1.0 , 20.0 )
6161# Falsi
6262g = function (p)
63- probN = NonlinearProblem {false} (f, typeof (p).(u0 ), p)
63+ probN = IntervalNonlinearProblem {false} (f, typeof (p).(tspan ), p)
6464 sol = solve (probN, Falsi ())
6565 return sol. left
6666end
@@ -70,13 +70,13 @@ for p in 1.1:0.1:100.0
7070 @test ForwardDiff. derivative (g, p) ≈ 1 / (2 * sqrt (p))
7171end
7272
73- f, u0 = (u, p) -> p[1 ] * u * u - p[2 ], (1.0 , 100.0 )
73+ f, tspan = (u, p) -> p[1 ] * u * u - p[2 ], (1.0 , 100.0 )
7474t = (p) -> [sqrt (p[2 ] / p[1 ])]
7575p = [0.9 , 50.0 ]
7676for alg in [Bisection (), Falsi ()]
7777 global g, p
7878 g = function (p)
79- probN = NonlinearProblem {false} (f, u0 , p)
79+ probN = IntervalNonlinearProblem {false} (f, tspan , p)
8080 sol = solve (probN, Bisection ())
8181 return [sol. left]
8282 end
@@ -115,8 +115,8 @@ for u0 in [1.0, [1, 1.0]]
115115end
116116
117117# Bisection Tests
118- f, u0 = (u, p) -> u .* u .- 2.0 , (1.0 , 2.0 )
119- probB = NonlinearProblem (f, u0 )
118+ f, tspan = (u, p) -> u .* u .- 2.0 , (1.0 , 2.0 )
119+ probB = IntervalNonlinearProblem (f, tspan )
120120
121121# Falsi
122122sol = solve (probB, Falsi ())
@@ -135,7 +135,7 @@ f = function (u, p)
135135 return 0.0
136136 end
137137end
138- probB = NonlinearProblem (f, (0.0 , 4.0 ))
138+ probB = IntervalNonlinearProblem (f, (0.0 , 4.0 ))
139139
140140sol = solve (probB, Bisection (; exact_left = true ))
141141@test f (sol. left, nothing ) < 0.0
0 commit comments