|
| 1 | +function scalar_nlsolve_ad(prob, alg, args...; kwargs...) |
| 2 | + f = prob.f |
| 3 | + p = value(prob.p) |
| 4 | + u0 = value(prob.u0) |
| 5 | + |
| 6 | + newprob = NonlinearProblem(f, u0, p; prob.kwargs...) |
| 7 | + sol = solve(newprob, alg, args...; kwargs...) |
| 8 | + |
| 9 | + uu = sol.u |
| 10 | + if p isa Number |
| 11 | + f_p = ForwardDiff.derivative(Base.Fix1(f, uu), p) |
| 12 | + else |
| 13 | + f_p = ForwardDiff.gradient(Base.Fix1(f, uu), p) |
| 14 | + end |
| 15 | + |
| 16 | + f_x = ForwardDiff.derivative(Base.Fix2(f, p), uu) |
| 17 | + pp = prob.p |
| 18 | + sumfun = let f_x′ = -f_x |
| 19 | + ((fp, p),) -> (fp / f_x′) * ForwardDiff.partials(p) |
| 20 | + end |
| 21 | + partials = sum(sumfun, zip(f_p, pp)) |
| 22 | + return sol, partials |
| 23 | +end |
| 24 | + |
| 25 | +function SciMLBase.solve(prob::NonlinearProblem{<:Union{Number, SVector}, iip, |
| 26 | + <:Dual{T, V, P}}, alg::SimpleNewtonRaphson, |
| 27 | + args...; kwargs...) where {iip, T, V, P} |
| 28 | + sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) |
| 29 | + return SciMLBase.build_solution(prob, alg, Dual{T, V, P}(sol.u, partials), sol.resid; |
| 30 | + retcode = sol.retcode) |
| 31 | +end |
| 32 | +function SciMLBase.solve(prob::NonlinearProblem{<:Union{Number, SVector}, iip, |
| 33 | + <:AbstractArray{<:Dual{T, V, P}}}, |
| 34 | + alg::SimpleNewtonRaphson, args...; kwargs...) where {iip, T, V, P} |
| 35 | + sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) |
| 36 | + return SciMLBase.build_solution(prob, alg, Dual{T, V, P}(sol.u, partials), sol.resid; |
| 37 | + retcode = sol.retcode) |
| 38 | +end |
| 39 | + |
| 40 | +# avoid ambiguities |
| 41 | +for Alg in [Bisection] |
| 42 | + @eval function SciMLBase.solve(prob::NonlinearProblem{uType, iip, <:Dual{T, V, P}}, |
| 43 | + alg::$Alg, args...; |
| 44 | + kwargs...) where {uType, iip, T, V, P} |
| 45 | + sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) |
| 46 | + return SciMLBase.build_solution(prob, alg, Dual{T, V, P}(sol.u, partials), |
| 47 | + sol.resid; retcode = sol.retcode, |
| 48 | + left = Dual{T, V, P}(sol.left, partials), |
| 49 | + right = Dual{T, V, P}(sol.right, partials)) |
| 50 | + #return BracketingSolution(Dual{T,V,P}(sol.left, partials), Dual{T,V,P}(sol.right, partials), sol.retcode, sol.resid) |
| 51 | + end |
| 52 | + @eval function SciMLBase.solve(prob::NonlinearProblem{uType, iip, |
| 53 | + <:AbstractArray{<:Dual{T, V, P}}}, |
| 54 | + alg::$Alg, args...; |
| 55 | + kwargs...) where {uType, iip, T, V, P} |
| 56 | + sol, partials = scalar_nlsolve_ad(prob, alg, args...; kwargs...) |
| 57 | + return SciMLBase.build_solution(prob, alg, Dual{T, V, P}(sol.u, partials), |
| 58 | + sol.resid; retcode = sol.retcode, |
| 59 | + left = Dual{T, V, P}(sol.left, partials), |
| 60 | + right = Dual{T, V, P}(sol.right, partials)) |
| 61 | + #return BracketingSolution(Dual{T,V,P}(sol.left, partials), Dual{T,V,P}(sol.right, partials), sol.retcode, sol.resid) |
| 62 | + end |
| 63 | +end |
0 commit comments