Comprehensive quality assurance automation framework for data validation and testing workflows
A production-grade QA automation pipeline demonstrating smart validation algorithms, activity-based tracking, and automated quality checks. This template showcases how to build scalable QA systems for data-intensive workflows with concurrent processing and intelligent error handling.
Real-world impact pattern: Automated quality checks processing thousands of work units daily, reducing manual QA time by 80%+ through smart validation and automated reporting.
- β Adaptive Validation Logic - Context-aware quality checks
- β Multi-level Validation - Structural, semantic, and business rule validation
- β Smart Error Detection - Pattern recognition for common issues
- β Validation Scoring - Quantifiable quality metrics
- β Concurrent Processing - Multi-threaded validation for performance
- β Batch Operations - Efficient bulk validation
- β Activity Tracking - Real-time progress monitoring
- β Automated Reporting - Self-service quality dashboards
- β Pipeline Orchestration - Integration with data workflows
- β Multiple Format Support - CSV, TSV, JSON, database
- β Database Export - Quality metrics persistence
- β ETL Integration - Pre and post-processing hooks
- β Comprehensive Dashboards - Quality trend analysis
- β Activity-based Metrics - Contributor tracking
- β Alert System - Threshold-based notifications
- β Export Capabilities - Multiple report formats
- Python - Core validation logic
- pandas - Data manipulation and analysis
- Threading - Concurrent processing
- SQLite/PostgreSQL - Metrics persistence
- pytest - Testing framework
- Logging - Comprehensive audit trails
# Clone repository
git clone https://github.com/Rweg/qa-automation-pipeline-template.git
cd qa-automation-pipeline-template
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Configure
cp config.example.py config.py
# Edit config.py with your settingsfrom src.qa_processor import QAProcessor
# Initialize processor
processor = QAProcessor(config_path='config.py')
# Run validation on dataset
results = processor.validate_dataset(
data_path='path/to/data.csv',
validation_level='comprehensive'
)
# Generate report
processor.generate_report(results, output='qa_report.html')from src.batch_validator import BatchValidator
# Initialize batch validator
validator = BatchValidator(
num_workers=4,
validation_rules='rules/default.json'
)
# Process multiple files
files = ['data1.csv', 'data2.csv', 'data3.csv']
results = validator.process_batch(files)
# Export metrics
validator.export_metrics(results, format='csv')from src.smart_validator import SmartValidator
# Initialize with adaptive rules
validator = SmartValidator(adaptive=True)
# Validate with context-aware checks
result = validator.validate(
data=work_unit,
context={
'priority': 'high',
'complexity': 'medium',
'previous_issues': []
}
)
# Get detailed insights
if not result['valid']:
print(f"Issues found: {result['issues']}")
print(f"Suggestions: {result['suggestions']}")# src/validation_rules.py
from typing import Dict, List, Any
class ValidationRule:
"""Base class for validation rules"""
def __init__(self, rule_id: str, severity: str = 'error'):
self.rule_id = rule_id
self.severity = severity
def validate(self, data: Dict) -> Dict[str, Any]:
"""
Validate data against rule
Returns:
{
'valid': bool,
'issues': List[str],
'score': float
}
"""
raise NotImplementedError
class CompleteLauncher(ValidationRule):
"""Validate required fields are present and complete"""
def validate(self, data: Dict) -> Dict[str, Any]:
required_fields = ['id', 'status', 'timestamp', 'data']
issues = []
for field in required_fields:
if field not in data:
issues.append(f"Missing required field: {field}")
elif data[field] is None or data[field] == '':
issues.append(f"Empty required field: {field}")
return {
'valid': len(issues) == 0,
'issues': issues,
'score': 1.0 - (len(issues) / len(required_fields))
}
class DataConsistencyRule(ValidationRule):
"""Validate data consistency across related fields"""
def validate(self, data: Dict) -> Dict[str, Any]:
issues = []
# Example: check timestamp consistency
if 'created_at' in data and 'updated_at' in data:
if data['updated_at'] < data['created_at']:
issues.append("Update timestamp before creation timestamp")
# Example: check status transitions
if data.get('status') == 'completed' and not data.get('completion_date'):
issues.append("Completed status without completion date")
return {
'valid': len(issues) == 0,
'issues': issues,
'score': 1.0 if len(issues) == 0 else 0.5
}# src/activity_tracker.py
import logging
from datetime import datetime
from typing import Dict, List
class ActivityTracker:
"""Track validation activity and metrics"""
def __init__(self, db_connection=None):
self.db = db_connection
self.logger = logging.getLogger(__name__)
self.activities = []
def log_validation(self, work_unit_id: str, result: Dict):
"""Log validation activity"""
activity = {
'timestamp': datetime.now(),
'work_unit_id': work_unit_id,
'valid': result['valid'],
'score': result.get('score', 0),
'issues_found': len(result.get('issues', [])),
'processing_time': result.get('processing_time', 0)
}
self.activities.append(activity)
if self.db:
self.store_activity(activity)
def get_summary(self, time_period='today') -> Dict:
"""Get activity summary"""
total = len(self.activities)
valid = sum(1 for a in self.activities if a['valid'])
return {
'total_validations': total,
'valid_count': valid,
'invalid_count': total - valid,
'success_rate': (valid / total * 100) if total > 0 else 0,
'avg_score': sum(a['score'] for a in self.activities) / total if total > 0 else 0
}# src/concurrent_validator.py
import concurrent.futures
from typing import List, Dict
import logging
class ConcurrentValidator:
"""Process validations concurrently for performance"""
def __init__(self, max_workers: int = 4):
self.max_workers = max_workers
self.logger = logging.getLogger(__name__)
def validate_batch(self, work_units: List[Dict]) -> List[Dict]:
"""
Validate multiple work units concurrently
Args:
work_units: List of work units to validate
Returns:
List of validation results
"""
results = []
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
# Submit all validation tasks
future_to_unit = {
executor.submit(self._validate_unit, unit): unit
for unit in work_units
}
# Collect results as they complete
for future in concurrent.futures.as_completed(future_to_unit):
unit = future_to_unit[future]
try:
result = future.result()
results.append(result)
except Exception as e:
self.logger.error(f"Validation failed for {unit.get('id')}: {str(e)}")
results.append({
'work_unit_id': unit.get('id'),
'valid': False,
'error': str(e)
})
return results
def _validate_unit(self, unit: Dict) -> Dict:
"""Validate a single work unit"""
# Import here to avoid circular imports
from src.qa_processor import QAProcessor
processor = QAProcessor()
return processor.validate_single(unit)QA Automation Pipeline
βββ Data Ingestion
β βββ Multiple format support (CSV, TSV, JSON, DB)
β βββ Batch loading
β βββ Streaming support
βββ Validation Engine
β βββ Rule-based validation
β βββ Smart validation (adaptive)
β βββ Custom validators
β βββ Context-aware checks
βββ Processing Layer
β βββ Concurrent processing
β βββ Progress tracking
β βββ Error handling
β βββ Retry logic
βββ Metrics & Reporting
β βββ Real-time dashboards
β βββ Activity tracking
β βββ Quality scores
β βββ Trend analysis
βββ Export & Integration
βββ Database persistence
βββ Report generation
βββ API endpoints
βββ Webhook notifications
===========================================
QA Automation Report - 2025-11-08
===========================================
Total Work Units Validated: 1,247
Valid: 1,186 (95.1%)
Invalid: 61 (4.9%)
Average Quality Score: 92.3
Processing Time: 34.2 minutes
Throughput: 36.5 units/minute
Top Issues:
1. Missing required fields (23 occurrences)
2. Data consistency errors (15 occurrences)
3. Format violations (12 occurrences)
===========================================
- Data Quality Assurance - Automated validation for data pipelines
- Annotation QA - Quality checks for labeled datasets
- ETL Testing - Validation in data transformation workflows
- API Response Validation - Automated API testing
- Database Integrity - Scheduled data consistency checks
- Compliance Checking - Automated regulatory compliance validation
# config.example.py
QA_CONFIG = {
'validation': {
'level': 'comprehensive', # basic, standard, comprehensive
'parallel_workers': 4,
'timeout_seconds': 30
},
'rules': {
'required_fields': ['id', 'status', 'data'],
'custom_validators': ['path/to/validators.py']
},
'reporting': {
'export_format': 'html', # html, csv, json
'metrics_retention_days': 90
},
'database': {
'type': 'sqlite', # sqlite, postgresql
'path': 'qa_metrics.db'
}
}- Concurrent Processing: 4-8x speedup with multi-threading
- Batch Operations: 10x faster than row-by-row
- Caching: Validation rule caching reduces overhead
- Adaptive Validation: Skip redundant checks based on context
MIT License - Free to use and modify
This template demonstrates:
- QA automation best practices
- Smart validation algorithms
- Concurrent processing patterns
- Activity-based tracking
- Production-grade error handling
- Comprehensive reporting systems
Part of a collection showcasing technical architecture patterns and implementation strategies.
Author: Toussaint Rwego
GitHub: @Rweg