Skip to content

Commit f60d5d8

Browse files
authored
Merge pull request #49 from QuantEcon/lln_clt
[LLN CLT] Update Translations
2 parents 6619304 + 6ca48ab commit f60d5d8

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

lectures/lln_clt.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -717,14 +717,14 @@ plt.show()
717717

718718
这种标准化可以基于以下三个观察结果来实现。
719719

720-
首先,如果$\mathbf X$是$\mathbb R^k$中的随机向量,$\mathbf A$是常数且为$k \times k$矩阵,那么
720+
首先,如果$\mathbf X$是$\mathbb R^k$中的随机向量,$\mathbf A$是常数且为$k \times k$矩阵,那么
721721

722722
$$
723723
\mathop{\mathrm{Var}}[\mathbf A \mathbf X]
724724
= \mathbf A \mathop{\mathrm{Var}}[\mathbf X] \mathbf A'
725725
$$
726726

727-
其次,根据[连续映射定理](https://en.wikipedia.org/wiki/Continuous_mapping_theorem),如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
727+
其次,连续映射定理指出,如果$g(\cdot)$是一个连续函数,且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
728728

729729
$$
730730
\mathbf A \mathbf Z_n

0 commit comments

Comments
 (0)