Skip to content

Commit 6ca48ab

Browse files
authored
Update lln_clt.md
1 parent cc25eab commit 6ca48ab

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

lectures/lln_clt.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -724,7 +724,7 @@ $$
724724
= \mathbf A \mathop{\mathrm{Var}}[\mathbf X] \mathbf A'
725725
$$
726726

727-
其次,连续映射定理指出, 如果$g(\cdot)$是一个连续函数, 且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
727+
其次,连续映射定理指出,如果$g(\cdot)$是一个连续函数,且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
728728

729729
$$
730730
\mathbf A \mathbf Z_n

0 commit comments

Comments
 (0)