We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent cc25eab commit 6ca48abCopy full SHA for 6ca48ab
lectures/lln_clt.md
@@ -724,7 +724,7 @@ $$
724
= \mathbf A \mathop{\mathrm{Var}}[\mathbf X] \mathbf A'
725
$$
726
727
-其次,连续映射定理指出, 如果$g(\cdot)$是一个连续函数, 且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
+其次,连续映射定理指出,如果$g(\cdot)$是一个连续函数,且随机变量序列$\{\mathbf{Z}_n\}$依分布收敛到随机变量$\mathbf{Z}$, 那么$\{g(\mathbf{Z}_n)\}$也依分布收敛到随机变量$g(\mathbf{Z})$。根据连续映射定理,如果$\mathbf Z_n \stackrel{d}{\to} \mathbf Z$在$\mathbb R^k$中成立,且$\mathbf A$是常数且为$k \times k$矩阵,那么
728
729
730
\mathbf A \mathbf Z_n
0 commit comments