Professional Svelte component to explore huge time-series datasets directly in the browser using DuckDB-WASM, Apache Arrow, and SVECharts.
- Overview
- Architecture
- Key features
- Installation
- Getting started
- Component API
- TimeSeriesFacade in practice
- Advanced APIs
- Reference scenarios
- Development & testing
- Support & contributions
@qtsurfer/svelte-timeseries ships everything you need to build financial, industrial, or scientific dashboards with millions of data points. The component offers:
- Parquet/Arrow ingestion via DuckDB-WASM right in the browser.
- Columnar → ECharts transformations powered by Apache Arrow.
- Marker/event overlays synchronized with any dimension.
- Customizable side panels through Svelte snippets.
| Layer | Role |
|---|---|
| DuckDB-WASM | Runs SQL against Parquet without any backend and keeps data in columnar memory. |
TimeSeriesFacade |
Coordinates DuckDB + TimeSeriesChartBuilder, handles incremental column loads, and exposes UI state. |
@qtsurfer/sveltecharts |
Facade that builds and updates ECharts instances declaratively. |
| SvelteKit | Hosts the component, snippets, and demo routes. |
- Browser-scale: battle-tested with datasets above 10M values without page reloads.
- Lazy dimensions: additional columns download only when the user toggles them on.
- Native markers: trading signals, alerts, or annotations rendered with custom icons and colors.
- Replaceable panels: default column/performance panels can be swapped with your own snippets.
- Debug mode: detailed DuckDB/ECharts logs to diagnose cross-browser performance.
pnpm add @qtsurfer/svelte-timeseries
# or
npm install @qtsurfer/svelte-timeseries
yarn add @qtsurfer/svelte-timeseriesRequirements:
- SvelteKit project with TypeScript enabled.
- Ability to serve Parquet/Arrow files (local assets or CDN).
<script lang="ts">
import { SvelteTimeSeries } from '@qtsurfer/svelte-timeseries';
const tables = {
temps: {
url: '/temps_gzip.parquet',
mainColumn: 'temp'
}
};
const markers = {
table: 'temps',
targetColumn: '_signal',
targetDimension: 'temp'
};
</script>
<SvelteTimeSeries table={tables} {markers} debug={false} />| Prop | Type | Description |
|---|---|---|
table |
Record<string, { url: string; mainColumn: string; columnsSelect?: string[] }> |
Defines the Parquet sources and their primary column; the object key becomes the DuckDB view name. |
markers? |
MarkersTableOptions |
Table and JSON column used to build the markers view (shape, color, position, text). |
debug? |
boolean (default true) |
Enables verbose DuckDB/builder logging. |
columnsSnippet? |
Snippet<[ColumnsProps]> |
Overrides the column toggle panel. |
performanceSnippet? |
Snippet<[PerformanceProps]> |
Overrides the performance/metrics panel. |
TimeSeriesFacade (see src/lib/TimeSeriesFacade.ts) encapsulates the component logic:
- Initialization (
initialize) – downloads the primary column, builds the dataset, and configures legends/icons. - Incremental loading (
addDimension/toggleColumn) – fetches new columns only when requested. - Markers (
loadMarkers) – reads themarkersview and adds annotations to ECharts. - Observable state (
getColumns,describe,getLegendStatus) – provides data for custom panels without touching DuckDB again.
Import the class directly to craft bespoke dashboards while reusing the DuckDB → Arrow → ECharts pipeline.
Reuse the same instance to run bespoke SQL before/after chart rendering.
import { DuckDB } from '@qtsurfer/svelte-timeseries';
const duck = await DuckDB.create(
{
signal: {
url: '/signals.parquet',
mainColumn: 'price'
}
},
undefined,
true
);
const rows = await duck.getRangeData('signal', '2024-01-01', '2024-01-31', 1000);
await duck.closeConnection();Key implementations (src/lib/duckdb/DuckDB.ts):
DuckDB.createvalidateswindow + Worker, registers Parquet views, and reports load time.getSingleDimensionnormalizes timestamps (ms) and returns Arrow arrays ready forTimeSeriesChartBuilder.buildTablesAndSchemasauto-detects types (casts%columns toDOUBLE, skips helper fields, builds themarkersview).transformTableToMatrixconverts Arrow results into[rows, columns]matrices consumable by any UI.
Craft fully custom ECharts layouts while reusing legend, marker, and metrics logic.
import { TimeSeriesChartBuilder } from '@qtsurfer/svelte-timeseries';
const builder = new TimeSeriesChartBuilder(echartsInstance, {
externalManagerLegend: true
});
builder.setLegendIcon('circle');
builder.setDataset(
{ _ts: timestamps, price: prices, ema20: ema20Series },
['_ts', 'price', 'ema20']
);
builder.addMarkerPoint(
{ dimName: 'price', timestamp: timestamps[100], name: 'Breakout' },
{ icon: 'pin', color: '#FF7F50' }
);
builder.build();Taken from the demo at packages/svelte-timeseries/src/routes/+page.svelte:
- Minimal data (
temps_gzip_mini.parquet): ideal for embedded dashboards or smoke tests. - 1 million rows (
temps_gzip.parquet): browser stress test without compromising UX. - Partial dataset (1,807,956 values): leverages
columnsSelectto keep the initial payload slim and load indicators on demand. - Full dataset (10,245,084 values): showcases dense quantitative strategies with every column available.
- Synchronized markers: active in the last two scenarios to overlay
_msignals on top ofprice.
pnpm install
pnpm dev --filter svelte-timeseries- Sample Parquet files live in
packages/svelte-timeseries/static. Adjust the demobaseUrlwhen publishing behind a CDN. - Useful debugging helpers in
DuckDB.ts:closeConnection,getRangeData,getMarkers. - Pass
debug={true}to measure real load times per browser.
- Need another scenario (streaming feeds, intraday aggregations)? Open an issue describing it.
- PRs are welcome—include reproduction steps, sample datasets, and screen captures when UI changes are involved.
- Using the component in production? Share your story so we can showcase it here.