|
| 1 | +import pandas as pd |
| 2 | +from sklearn.model_selection import train_test_split, GridSearchCV |
| 3 | +from sklearn.tree import DecisionTreeClassifier |
| 4 | +from sklearn.ensemble import RandomForestClassifier |
| 5 | +from sklearn.metrics import accuracy_score, classification_report |
| 6 | +import joblib |
| 7 | + |
| 8 | +# Load your dataset |
| 9 | +# For demonstration, we will create a synthetic dataset |
| 10 | +# In a real scenario, you would load your dataset from a CSV or database |
| 11 | +data = { |
| 12 | + 'asset_type': ['stock', 'bond', 'stock', 'bond', 'stock', 'real estate', 'real estate', 'bond', 'stock', 'real estate'], |
| 13 | + 'risk_level': [1, 0, 1, 0, 1, 2, 2, 0, 1, 2], # 0: Low, 1: Medium, 2: High |
| 14 | + 'return': [10, 5, 12, 3, 15, 8, 9, 4, 11, 7] # Example feature |
| 15 | +} |
| 16 | + |
| 17 | +df = pd.DataFrame(data) |
| 18 | + |
| 19 | +# Encode categorical variables |
| 20 | +df['asset_type'] = df['asset_type'].astype('category').cat.codes |
| 21 | + |
| 22 | +# Features and target variable |
| 23 | +X = df[['asset_type', 'risk_level', 'return']] |
| 24 | +y = df['asset_type'] # Predict asset type |
| 25 | + |
| 26 | +# Split the data into training and testing sets |
| 27 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
| 28 | + |
| 29 | +# Model selection and hyperparameter tuning using GridSearchCV |
| 30 | +param_grid = { |
| 31 | + 'n_estimators': [50, 100, 200], |
| 32 | + 'max_depth': [None, 10, 20, 30], |
| 33 | + 'min_samples_split': [2, 5, 10] |
| 34 | +} |
| 35 | + |
| 36 | +# Using Random Forest Classifier for better performance |
| 37 | +model = RandomForestClassifier(random_state=42) |
| 38 | + |
| 39 | +# Grid search for hyperparameter tuning |
| 40 | +grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy', verbose=2, n_jobs=-1) |
| 41 | +grid_search.fit(X_train, y_train) |
| 42 | + |
| 43 | +# Best model from grid search |
| 44 | +best_model = grid_search.best_estimator_ |
| 45 | + |
| 46 | +# Evaluate the model |
| 47 | +y_pred = best_model.predict(X_test) |
| 48 | +accuracy = accuracy_score(y_test, y_pred) |
| 49 | +report = classification_report(y_test, y_pred) |
| 50 | + |
| 51 | +print(f'Accuracy: {accuracy}') |
| 52 | +print('Classification Report:') |
| 53 | +print(report) |
| 54 | + |
| 55 | +# Save the model |
| 56 | +joblib.dump(best_model, 'models/asset_management_model.pkl') |
| 57 | +print('Asset management model saved as asset_management_model.pkl') |
0 commit comments