|
| 1 | +import pandas as pd |
| 2 | +from sklearn.model_selection import train_test_split, GridSearchCV |
| 3 | +from sklearn.linear_model import LinearRegression |
| 4 | +from sklearn.ensemble import RandomForestRegressor |
| 5 | +from sklearn.metrics import mean_squared_error, r2_score |
| 6 | +import joblib |
| 7 | +import numpy as np |
| 8 | + |
| 9 | +# Load your dataset |
| 10 | +# For demonstration, we will create a synthetic dataset |
| 11 | +# In a real scenario, you would load your dataset from a CSV or database |
| 12 | +data = { |
| 13 | + 'historical_demand': [100, 150, 200, 250, 300, 350, 400, 450, 500, 550], |
| 14 | + 'seasonality': [1, 1, 1, 2, 2, 2, 3, 3, 3, 4], # Example feature |
| 15 | + 'promotion': [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # Example feature: promotional activity |
| 16 | +} |
| 17 | + |
| 18 | +df = pd.DataFrame(data) |
| 19 | + |
| 20 | +# Features and target variable |
| 21 | +X = df[['historical_demand', 'seasonality', 'promotion']] |
| 22 | +y = df['historical_demand'].shift(-1).dropna() # Predict next period's demand |
| 23 | +X = X[:-1] # Align X with y |
| 24 | + |
| 25 | +# Split the data into training and testing sets |
| 26 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
| 27 | + |
| 28 | +# Model selection and hyperparameter tuning using GridSearchCV |
| 29 | +param_grid = { |
| 30 | + 'n_estimators': [50, 100, 200], |
| 31 | + 'max_depth': [None, 10, 20, 30], |
| 32 | + 'min_samples_split': [2, 5, 10] |
| 33 | +} |
| 34 | + |
| 35 | +# Using Random Forest Regressor for better performance |
| 36 | +model = RandomForestRegressor(random_state=42) |
| 37 | + |
| 38 | +# Grid search for hyperparameter tuning |
| 39 | +grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='neg_mean_squared_error', verbose=2, n_jobs=-1) |
| 40 | +grid_search.fit(X_train, y_train) |
| 41 | + |
| 42 | +# Best model from grid search |
| 43 | +best_model = grid_search.best_estimator_ |
| 44 | + |
| 45 | +# Evaluate the model |
| 46 | +y_pred = best_model.predict(X_test) |
| 47 | +mse = mean_squared_error(y_test, y_pred) |
| 48 | +r2 = r2_score(y_test, y_pred) |
| 49 | + |
| 50 | +print(f'Mean Squared Error: {mse}') |
| 51 | +print(f'R^2 Score: {r2}') |
| 52 | + |
| 53 | +# Save the model |
| 54 | +joblib.dump(best_model, 'models/demand_prediction_model.pkl') |
| 55 | +print('Demand prediction model saved as demand_prediction_model.pkl') |
0 commit comments