Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 68 additions & 0 deletions Lamina_Zafrullah_Segun
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn import datasets

BC = datasets.load_breast_cancer()
X, y = BC.data, BC.target

class LogisticRegression:
def __init__(self, lr=0.0001, num_iter=300000, fit_intercept=True, verbose=False):
self.lr = lr
self.num_iter = num_iter
self.fit_intercept = fit_intercept
self.verbose = verbose

def __add_intercept(self, X):
intercept = np.ones((X.shape[0], 1))
return np.concatenate((intercept, X), axis=1)

def __sigmoid(self, z):
return 1 / (1 + np.exp(-z))
def __loss(self, h, y):
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()

def fit(self, X, y):
if self.fit_intercept:
X = self.__add_intercept(X)

# weights initialization
self.theta = np.zeros(X.shape[1])

for i in range(self.num_iter):
z = np.dot(X, self.theta)
h = self.__sigmoid(z)
gradient = np.dot(X.T, (y - h))
self.theta += self.lr * gradient

z = np.dot(X, self.theta)
h = self.__sigmoid(z)
loss = self.__loss(h, y)

if(self.verbose ==True and i % 10000 == 0):
print(f'loss: {loss} \t')

def predict_prob(self, X):
if self.fit_intercept:
X = self.__add_intercept(X)

return self.__sigmoid(np.dot(X, self.theta))

def predict(self, X):
return self.predict_prob(X).round()

BC = datasets.load_breast_cancer()
X, y = BC.data, BC.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.3, random_state=1234)

def accuracy(y_true, y_pred):
accuracy = np.sum(y_true == y_pred) / len(y_true)
return accuracy

regressor = LogisticRegression(lr=0.00001, num_iter=3000000)
regressor.fit(X_train, y_train)
predictions = regressor.predict(X_test)

print ('Logistic Regression Accuracy:', accuracy(y_test, predictions))