@@ -36,7 +36,7 @@ def _create_table(self, table_path):
3636 PRIMARY KEY(pk)
3737 );
3838 """
39- self .query (create_table_sql , True )
39+ self .query (create_table_sql )
4040
4141 def _create_index (
4242 self , table_path , vector_type , vector_dimension , levels , clusters , distance = None , similarity = None
@@ -73,7 +73,7 @@ def _create_index(
7373 );
7474 """
7575 logger .info (create_index_sql )
76- self .query (create_index_sql , True )
76+ self .query (create_index_sql )
7777
7878 def _upsert_values (self , table_path , vector_type , vector_dimension ):
7979 logger .info ("Upsert values" )
@@ -90,7 +90,7 @@ def _upsert_values(self, table_path, vector_type, vector_dimension):
9090 UPSERT INTO `{ table_path } ` (pk, embedding)
9191 VALUES { "," .join (values )} ;
9292 """
93- self .query (upsert_sql , False )
93+ self .query (upsert_sql )
9494
9595 def _select (self , table_path , vector_type , vector_dimension , distance , similarity ):
9696 if distance is not None :
@@ -110,20 +110,19 @@ def _select(self, table_path, vector_type, vector_dimension, distance, similarit
110110 ORDER BY { target } (embedding, $Target) { order }
111111 LIMIT { self .limit } ;
112112 """
113- return self .query (select_sql , False )
113+ return self .query (select_sql )
114114
115115 def _select_top (self , table_path , vector_type , vector_dimension , distance , similarity ):
116116 logger .info ("Select values from table" )
117- result_set = self ._select (
117+ rows = self ._select (
118118 table_path = table_path ,
119119 vector_type = vector_type ,
120120 vector_dimension = vector_dimension ,
121121 distance = distance ,
122122 similarity = similarity ,
123123 )
124- assert len (result_set ) != 0 , "Query returned an empty set"
124+ assert len (rows ) != 0 , "Query returned an empty set"
125125
126- rows = result_set [0 ].rows
127126 logger .info (f"Rows count { len (rows )} " )
128127
129128 prev = 0.0 if distance is not None else 1.0
@@ -183,7 +182,7 @@ def test_vector_index(self):
183182 similarity_data = ["cosine" ] # "inner_product", "cosine"
184183 vector_type_data = ["float" , "int8" ]
185184 levels_data = [1 , 3 ]
186- clusters_data = [1 , 17 ]
185+ clusters_data = [2 , 17 ]
187186 vector_dimension_data = [5 ]
188187
189188 for vector_type in vector_type_data :
0 commit comments