|
| 1 | +from . import LangKitConfig |
| 2 | +from whylogs.experimental.core.metrics.udf_metric import ( |
| 3 | + register_metric_udf, |
| 4 | +) |
| 5 | +from typing import Optional |
| 6 | +from sentence_transformers import SentenceTransformer, util |
| 7 | +from torch import Tensor |
| 8 | +from typing import Callable |
| 9 | +from whylogs.core.datatypes import DataType |
| 10 | +from whylogs.experimental.core.metrics.udf_metric import _col_type_submetrics |
| 11 | +from logging import getLogger |
| 12 | +import json |
| 13 | +from langkit.transformer import load_model |
| 14 | +from whylogs.core.datatypes import String |
| 15 | + |
| 16 | +diagnostic_logger = getLogger(__name__) |
| 17 | + |
| 18 | +_transformer_model = None |
| 19 | +_theme_groups = None |
| 20 | + |
| 21 | +lang_config = LangKitConfig() |
| 22 | + |
| 23 | +def register_theme_udfs(): |
| 24 | + if "jailbreaks" in _theme_groups: |
| 25 | + jailbreak_embeddings = [ |
| 26 | + _transformer_model.encode(s, convert_to_tensor=True) |
| 27 | + for s in _theme_groups["jailbreaks"] |
| 28 | + ] |
| 29 | + @register_metric_udf(col_type=String) |
| 30 | + def jailbreak_similarity(text: str) -> float: |
| 31 | + similarities = [] |
| 32 | + for embedding in jailbreak_embeddings: |
| 33 | + similarity = get_subject_similarity(text, embedding) |
| 34 | + similarities.append(similarity) |
| 35 | + return max(similarities) |
| 36 | + |
| 37 | + if "refusals" in _theme_groups: |
| 38 | + refusal_embeddings = [ |
| 39 | + _transformer_model.encode(s, convert_to_tensor=True) |
| 40 | + for s in _theme_groups["refusals"] |
| 41 | + ] |
| 42 | + @register_metric_udf(col_type=String) |
| 43 | + def refusal_similarity(text: str) -> float: |
| 44 | + similarities = [] |
| 45 | + for embedding in refusal_embeddings: |
| 46 | + similarity = get_subject_similarity(text, embedding) |
| 47 | + similarities.append(similarity) |
| 48 | + return max(similarities) |
| 49 | + |
| 50 | + |
| 51 | +def load_themes(json_path: str): |
| 52 | + try: |
| 53 | + skip = False |
| 54 | + with open(json_path, "r") as myfile: |
| 55 | + theme_groups = json.load(myfile) |
| 56 | + except FileNotFoundError: |
| 57 | + skip = True |
| 58 | + diagnostic_logger.warning(f"Could not find {json_path}") |
| 59 | + except json.decoder.JSONDecodeError as json_error: |
| 60 | + skip = True |
| 61 | + diagnostic_logger.warning(f"Could not parse {json_path}: {json_error}") |
| 62 | + if not skip: |
| 63 | + return theme_groups |
| 64 | + return None |
| 65 | + |
| 66 | + |
| 67 | +def init(transformer_name: Optional[str]=None, theme_file_path: Optional[str]=None): |
| 68 | + global _transformer_model |
| 69 | + global _theme_groups |
| 70 | + if transformer_name is None: |
| 71 | + transformer_name = lang_config.transformer_name |
| 72 | + if theme_file_path is None: |
| 73 | + _theme_groups = load_themes(lang_config.theme_file_path) |
| 74 | + else: |
| 75 | + _theme_groups = load_themes(theme_file_path) |
| 76 | + |
| 77 | + _transformer_model = load_model(transformer_name) |
| 78 | + |
| 79 | + register_theme_udfs() |
| 80 | + |
| 81 | + |
| 82 | +def get_subject_similarity(text: str, comparison_embedding: Tensor) -> float: |
| 83 | + embedding = _transformer_model.encode(text, convert_to_tensor=True) |
| 84 | + similarity = util.pytorch_cos_sim(embedding, comparison_embedding) |
| 85 | + return similarity.item() |
| 86 | + |
| 87 | +init() |
0 commit comments