|
| 1 | +import copy |
| 2 | +import filecmp |
| 3 | +import json |
| 4 | +import pathlib |
| 5 | +import shutil |
| 6 | +import subprocess |
| 7 | +from typing import Dict, Any |
| 8 | + |
| 9 | +import fire |
| 10 | + |
| 11 | +import torch |
| 12 | +from torchao.core.config import AOBaseConfig, config_from_dict |
| 13 | +from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow |
| 14 | +from torchao.quantization.quantize_.workflows.float8.float8_tensor import Float8Tensor |
| 15 | + |
| 16 | +from safetensors import safe_open |
| 17 | +from safetensors.torch import save_file |
| 18 | + |
| 19 | +def ao_config_to_compressed_tensors_config(aobaseconfig: AOBaseConfig) -> Dict[str, Any]: |
| 20 | + # for now, allowlist of recipes we know how to convert and hand convert |
| 21 | + # them here |
| 22 | + # for a production version, we'll need a more scalable way to do this |
| 23 | + |
| 24 | + assert isinstance(aobaseconfig, Float8DynamicActivationFloat8WeightConfig), "unsupported" |
| 25 | + assert aobaseconfig.granularity == [PerRow(), PerRow()], "unsupported" |
| 26 | + |
| 27 | + ct_config = { |
| 28 | + "format": "float-quantized", |
| 29 | + "input_activations": { |
| 30 | + "dynamic": True, |
| 31 | + "num_bits": 8, |
| 32 | + "strategy": "token", |
| 33 | + "symmetric": True, |
| 34 | + "type": "float", |
| 35 | + }, |
| 36 | + "output_activations": None, |
| 37 | + "targets": ["Linear"], |
| 38 | + "weights": { |
| 39 | + "dynamic": False, |
| 40 | + "num_bits": 8, |
| 41 | + "observer": "minmax", |
| 42 | + "strategy": "channel", |
| 43 | + "symmetric": True, |
| 44 | + "type": "float", |
| 45 | + }, |
| 46 | + } |
| 47 | + return ct_config |
| 48 | + |
| 49 | +def run( |
| 50 | + # original torchao checkpoint |
| 51 | + dir_source: str = 'data/torchao/fp8-opt-125m', |
| 52 | + # new compressed-tensors checkpoint |
| 53 | + dir_target: str = 'data/torchao_compressed_tensors/fp8-opt-125m', |
| 54 | + # existing compressed-tensors checkpoint to validate against |
| 55 | + dir_validation: str = 'data/llmcompressor/fp8-opt-125m', |
| 56 | + skip_conversion: bool = False, |
| 57 | +): |
| 58 | + config_name_source = f"{dir_source}/config.json" |
| 59 | + config_name_target = f"{dir_target}/config.json" |
| 60 | + config_name_validation = f"{dir_validation}/config.json" |
| 61 | + weights_name_source = f"{dir_source}/pytorch_model.bin" |
| 62 | + weights_name_target = f"{dir_target}/model.safetensors" |
| 63 | + weights_name_validation = f"{dir_validation}/model.safetensors" |
| 64 | + |
| 65 | + if not skip_conversion: |
| 66 | + # |
| 67 | + # convert config.json |
| 68 | + # |
| 69 | + |
| 70 | + with open(config_name_source, 'r') as f: |
| 71 | + config_source = json.load(f) |
| 72 | + |
| 73 | + # get torchao config format |
| 74 | + # example: https://www.internalfb.com/phabricator/paste/view/P1975688376 |
| 75 | + # we need to translate it to compressed-tensors format |
| 76 | + # example: https://www.internalfb.com/phabricator/paste/view/P1975642629 |
| 77 | + old_hf_quantization_config = config_source["quantization_config"] |
| 78 | + fqn_to_serialized_aobaseconfig = old_hf_quantization_config["quant_type"] |
| 79 | + assert len(fqn_to_serialized_aobaseconfig) == 1, "unsupported" |
| 80 | + |
| 81 | + new_hf_quantization_config = { |
| 82 | + "config_groups": {}, |
| 83 | + "format": "float-quantized", |
| 84 | + "ignore": ["lm_head"], |
| 85 | + "quant_method": "compressed-tensors", |
| 86 | + "quantization_status": "compressed", |
| 87 | + "sparsity_config": {}, |
| 88 | + "transform_config": {}, |
| 89 | + "version": "torchao_hack", |
| 90 | + } |
| 91 | + |
| 92 | + for fqn, serialized_aobaseconfig in fqn_to_serialized_aobaseconfig.items(): |
| 93 | + print(fqn, serialized_aobaseconfig) |
| 94 | + aobaseconfig = config_from_dict(serialized_aobaseconfig) |
| 95 | + print(aobaseconfig) |
| 96 | + ct_config = ao_config_to_compressed_tensors_config(aobaseconfig) |
| 97 | + print(json.dumps(ct_config, indent=2)) |
| 98 | + |
| 99 | + assert fqn == "default", "unsupported" |
| 100 | + new_hf_quantization_config["config_groups"]["group_0"] = ct_config |
| 101 | + |
| 102 | + # for now, modify config_source inplace |
| 103 | + config_source["quantization_config"] = new_hf_quantization_config |
| 104 | + |
| 105 | + # save to new location |
| 106 | + with open(config_name_target, 'w') as f: |
| 107 | + json.dump(config_source, f, indent=2) |
| 108 | + |
| 109 | + # |
| 110 | + # convert the checkpoint |
| 111 | + # |
| 112 | + |
| 113 | + # not sure why I still need this |
| 114 | + torch.serialization.add_safe_globals([getattr]) |
| 115 | + |
| 116 | + old_state_dict = torch.load(weights_name_source, weights_only=True) |
| 117 | + new_state_dict = {} |
| 118 | + |
| 119 | + for k, v in old_state_dict.items(): |
| 120 | + print(k, v.shape, type(v)) |
| 121 | + if type(v) == torch.Tensor: |
| 122 | + |
| 123 | + if "lm_head" in k: |
| 124 | + # work around issues detailed in |
| 125 | + # https://huggingface.co/docs/safetensors/torch_shared_tensors |
| 126 | + v = copy.deepcopy(v) |
| 127 | + |
| 128 | + new_state_dict[k] = v |
| 129 | + elif type(v) == Float8Tensor: |
| 130 | + new_state_dict[k] = v.qdata |
| 131 | + # for now, manually cast scale to bfloat16 to match currnt |
| 132 | + # llm-compressor script |
| 133 | + # TODO(future): prob needs to be user controllable |
| 134 | + new_state_dict[k + '_scale'] = v.scale.bfloat16() |
| 135 | + else: |
| 136 | + raise AssertionError(f'unsupported type {type(v)}') |
| 137 | + save_file(new_state_dict, weights_name_target) |
| 138 | + |
| 139 | + # move all the other files over |
| 140 | + for dir_and_file_path in pathlib.Path(dir_source).iterdir(): |
| 141 | + if not dir_and_file_path.is_file(): |
| 142 | + continue |
| 143 | + file_path = dir_and_file_path.parts[-1] |
| 144 | + if file_path in ('config.json', 'pytorch_model.bin'): |
| 145 | + # these are converted in custom logic elsewhere in this script |
| 146 | + continue |
| 147 | + # if we got here, we just need to copy the file over without any changes |
| 148 | + target_file_path = f"{dir_target}/{str(file_path)}" |
| 149 | + shutil.copyfile(dir_and_file_path, target_file_path) |
| 150 | + |
| 151 | + # validate target_dir vs validation_dir |
| 152 | + for dir_and_file_path in pathlib.Path(dir_target).iterdir(): |
| 153 | + if not dir_and_file_path.is_file(): |
| 154 | + continue |
| 155 | + file_path_target = dir_and_file_path.parts[-1] |
| 156 | + print("\nvalidating", file_path_target) |
| 157 | + dir_and_file_path_validation = f"{dir_validation}/{str(file_path_target)}" |
| 158 | + |
| 159 | + if file_path_target == 'config.json': |
| 160 | + # for now just diff and print the output to stdout |
| 161 | + command = f'diff {dir_and_file_path} {dir_and_file_path_validation}' |
| 162 | + try: |
| 163 | + result = subprocess.run(command, capture_output=False, text=True, shell=True, check=True) |
| 164 | + except subprocess.CalledProcessError as e: |
| 165 | + # this will always fail, for now, as we are not perfectly matching |
| 166 | + print(e.stderr) |
| 167 | + |
| 168 | + elif file_path_target == 'model.safetensors': |
| 169 | + # TODO implement me |
| 170 | + pass |
| 171 | + |
| 172 | + with safe_open(dir_and_file_path, framework='pt') as f_target: |
| 173 | + with safe_open(dir_and_file_path_validation, framework='pt') as f_validation: |
| 174 | + k_target_seen = set() |
| 175 | + for k_target in f_target.keys(): |
| 176 | + v_target = f_target.get_tensor(k_target) |
| 177 | + v_validation = f_validation.get_tensor(k_target) |
| 178 | + |
| 179 | + # ensure metadata matches |
| 180 | + if v_target.shape != v_validation.shape: |
| 181 | + print(f"shape mismatch: {k_target=}, {v_target.shape=}, {v_validation.shape=}") |
| 182 | + |
| 183 | + if v_target.dtype != v_validation.dtype: |
| 184 | + print(f"dtype mismatch: {k_target=}, {v_target.dtype=}, {v_validation.dtype=}") |
| 185 | + |
| 186 | + # for now, no numerical checks |
| 187 | + |
| 188 | + k_target_seen.add(k_target) |
| 189 | + |
| 190 | + for k_validation in f_validation.keys(): |
| 191 | + if k_validation not in k_target_seen: |
| 192 | + print(f"key {k_validation} not present in target") |
| 193 | + |
| 194 | + else: |
| 195 | + # approx check, currently fails because modification timestamp is not the |
| 196 | + # same. Since we copy these files ourselves, low-pri to make this better. |
| 197 | + is_equal = filecmp.cmp(dir_and_file_path, dir_and_file_path_validation, shallow=False) |
| 198 | + print('filecmp equal', is_equal) |
| 199 | + |
| 200 | +if __name__ == '__main__': |
| 201 | + fire.Fire(run) |
0 commit comments