|
12 | 12 | { |
13 | 13 | "cell_type": "code", |
14 | 14 | "execution_count": null, |
15 | | - "metadata": {}, |
| 15 | + "metadata": { |
| 16 | + "collapsed": true |
| 17 | + }, |
16 | 18 | "outputs": [], |
17 | 19 | "source": [ |
18 | 20 | "# Import necessary packages\n", |
|
45 | 47 | { |
46 | 48 | "cell_type": "code", |
47 | 49 | "execution_count": null, |
48 | | - "metadata": {}, |
| 50 | + "metadata": { |
| 51 | + "collapsed": true |
| 52 | + }, |
49 | 53 | "outputs": [], |
50 | 54 | "source": [ |
51 | 55 | "### Run this cell\n", |
|
79 | 83 | { |
80 | 84 | "cell_type": "code", |
81 | 85 | "execution_count": null, |
82 | | - "metadata": {}, |
| 86 | + "metadata": { |
| 87 | + "collapsed": true |
| 88 | + }, |
83 | 89 | "outputs": [], |
84 | 90 | "source": [ |
85 | 91 | "dataiter = iter(trainloader)\n", |
|
99 | 105 | { |
100 | 106 | "cell_type": "code", |
101 | 107 | "execution_count": null, |
102 | | - "metadata": {}, |
| 108 | + "metadata": { |
| 109 | + "collapsed": true |
| 110 | + }, |
103 | 111 | "outputs": [], |
104 | 112 | "source": [ |
105 | 113 | "plt.imshow(images[1].numpy().squeeze(), cmap='Greys_r');" |
|
121 | 129 | { |
122 | 130 | "cell_type": "code", |
123 | 131 | "execution_count": null, |
124 | | - "metadata": {}, |
| 132 | + "metadata": { |
| 133 | + "collapsed": true |
| 134 | + }, |
125 | 135 | "outputs": [], |
126 | 136 | "source": [ |
127 | 137 | "## Your solution\n", |
|
153 | 163 | { |
154 | 164 | "cell_type": "code", |
155 | 165 | "execution_count": null, |
156 | | - "metadata": {}, |
| 166 | + "metadata": { |
| 167 | + "collapsed": true |
| 168 | + }, |
157 | 169 | "outputs": [], |
158 | 170 | "source": [ |
159 | 171 | "def softmax(x):\n", |
|
180 | 192 | { |
181 | 193 | "cell_type": "code", |
182 | 194 | "execution_count": null, |
183 | | - "metadata": {}, |
| 195 | + "metadata": { |
| 196 | + "collapsed": true |
| 197 | + }, |
184 | 198 | "outputs": [], |
185 | 199 | "source": [ |
186 | 200 | "from torch import nn" |
|
189 | 203 | { |
190 | 204 | "cell_type": "code", |
191 | 205 | "execution_count": null, |
192 | | - "metadata": {}, |
| 206 | + "metadata": { |
| 207 | + "collapsed": true |
| 208 | + }, |
193 | 209 | "outputs": [], |
194 | 210 | "source": [ |
195 | 211 | "class Network(nn.Module):\n", |
|
231 | 247 | "self.hidden = nn.Linear(784, 256)\n", |
232 | 248 | "```\n", |
233 | 249 | "\n", |
234 | | - "This line creates a module for a linear transformation, $x\\mathbf{W} + b$, with 784 inputs and 256 outputs and assigns it to `self.hidden`. The module automatically creates the weight and bias tensors which we'll use in the `forward` method. You can access the weight and bias tensors once the network once it's create at `net.hidden.weight` and `net.hidden.bias`.\n", |
| 250 | + "This line creates a module for a linear transformation, $x\\mathbf{W} + b$, with 784 inputs and 256 outputs and assigns it to `self.hidden`. The module automatically creates the weight and bias tensors which we'll use in the `forward` method. You can access the weight and bias tensors once the network (`net`) is created with `net.hidden.weight` and `net.hidden.bias`.\n", |
235 | 251 | "\n", |
236 | 252 | "```python\n", |
237 | 253 | "self.output = nn.Linear(256, 10)\n", |
|
267 | 283 | { |
268 | 284 | "cell_type": "code", |
269 | 285 | "execution_count": null, |
270 | | - "metadata": {}, |
| 286 | + "metadata": { |
| 287 | + "collapsed": true |
| 288 | + }, |
271 | 289 | "outputs": [], |
272 | 290 | "source": [ |
273 | 291 | "# Create the network and look at it's text representation\n", |
|
285 | 303 | { |
286 | 304 | "cell_type": "code", |
287 | 305 | "execution_count": null, |
288 | | - "metadata": {}, |
| 306 | + "metadata": { |
| 307 | + "collapsed": true |
| 308 | + }, |
289 | 309 | "outputs": [], |
290 | 310 | "source": [ |
291 | 311 | "import torch.nn.functional as F\n", |
|
335 | 355 | "cell_type": "code", |
336 | 356 | "execution_count": null, |
337 | 357 | "metadata": { |
| 358 | + "collapsed": true, |
338 | 359 | "scrolled": true |
339 | 360 | }, |
340 | 361 | "outputs": [], |
|
354 | 375 | { |
355 | 376 | "cell_type": "code", |
356 | 377 | "execution_count": null, |
357 | | - "metadata": {}, |
| 378 | + "metadata": { |
| 379 | + "collapsed": true |
| 380 | + }, |
358 | 381 | "outputs": [], |
359 | 382 | "source": [ |
360 | 383 | "print(model.fc1.weight)\n", |
|
371 | 394 | { |
372 | 395 | "cell_type": "code", |
373 | 396 | "execution_count": null, |
374 | | - "metadata": {}, |
| 397 | + "metadata": { |
| 398 | + "collapsed": true |
| 399 | + }, |
375 | 400 | "outputs": [], |
376 | 401 | "source": [ |
377 | 402 | "# Set biases to all zeros\n", |
|
381 | 406 | { |
382 | 407 | "cell_type": "code", |
383 | 408 | "execution_count": null, |
384 | | - "metadata": {}, |
| 409 | + "metadata": { |
| 410 | + "collapsed": true |
| 411 | + }, |
385 | 412 | "outputs": [], |
386 | 413 | "source": [ |
387 | 414 | "# sample from random normal with standard dev = 0.01\n", |
|
400 | 427 | { |
401 | 428 | "cell_type": "code", |
402 | 429 | "execution_count": null, |
403 | | - "metadata": {}, |
| 430 | + "metadata": { |
| 431 | + "collapsed": true |
| 432 | + }, |
404 | 433 | "outputs": [], |
405 | 434 | "source": [ |
406 | 435 | "# Grab some data \n", |
|
433 | 462 | { |
434 | 463 | "cell_type": "code", |
435 | 464 | "execution_count": null, |
436 | | - "metadata": {}, |
| 465 | + "metadata": { |
| 466 | + "collapsed": true |
| 467 | + }, |
437 | 468 | "outputs": [], |
438 | 469 | "source": [ |
439 | 470 | "# Hyperparameters for our network\n", |
|
469 | 500 | { |
470 | 501 | "cell_type": "code", |
471 | 502 | "execution_count": null, |
472 | | - "metadata": {}, |
| 503 | + "metadata": { |
| 504 | + "collapsed": true |
| 505 | + }, |
473 | 506 | "outputs": [], |
474 | 507 | "source": [ |
475 | 508 | "print(model[0])\n", |
|
486 | 519 | { |
487 | 520 | "cell_type": "code", |
488 | 521 | "execution_count": null, |
489 | | - "metadata": {}, |
| 522 | + "metadata": { |
| 523 | + "collapsed": true |
| 524 | + }, |
490 | 525 | "outputs": [], |
491 | 526 | "source": [ |
492 | 527 | "from collections import OrderedDict\n", |
|
510 | 545 | { |
511 | 546 | "cell_type": "code", |
512 | 547 | "execution_count": null, |
513 | | - "metadata": {}, |
| 548 | + "metadata": { |
| 549 | + "collapsed": true |
| 550 | + }, |
514 | 551 | "outputs": [], |
515 | 552 | "source": [ |
516 | 553 | "print(model[0])\n", |
|
527 | 564 | ], |
528 | 565 | "metadata": { |
529 | 566 | "kernelspec": { |
530 | | - "display_name": "Python 3", |
| 567 | + "display_name": "Python [default]", |
531 | 568 | "language": "python", |
532 | 569 | "name": "python3" |
533 | 570 | }, |
|
541 | 578 | "name": "python", |
542 | 579 | "nbconvert_exporter": "python", |
543 | 580 | "pygments_lexer": "ipython3", |
544 | | - "version": "3.6.6" |
| 581 | + "version": "3.6.4" |
545 | 582 | } |
546 | 583 | }, |
547 | 584 | "nbformat": 4, |
|
0 commit comments