@@ -19381,7 +19381,27 @@ namespace ts {
1938119381
1938219382 function structuredTypeRelatedTo(source: Type, target: Type, reportErrors: boolean, intersectionState: IntersectionState): Ternary {
1938319383 const saveErrorInfo = captureErrorCalculationState();
19384- const result = structuredTypeRelatedToWorker(source, target, reportErrors, intersectionState, saveErrorInfo);
19384+ let result = structuredTypeRelatedToWorker(source, target, reportErrors, intersectionState, saveErrorInfo);
19385+ if (!result && (source.flags & TypeFlags.Intersection || source.flags & TypeFlags.TypeParameter && target.flags & TypeFlags.Union)) {
19386+ // The combined constraint of an intersection type is the intersection of the constraints of
19387+ // the constituents. When an intersection type contains instantiable types with union type
19388+ // constraints, there are situations where we need to examine the combined constraint. One is
19389+ // when the target is a union type. Another is when the intersection contains types belonging
19390+ // to one of the disjoint domains. For example, given type variables T and U, each with the
19391+ // constraint 'string | number', the combined constraint of 'T & U' is 'string | number' and
19392+ // we need to check this constraint against a union on the target side. Also, given a type
19393+ // variable V constrained to 'string | number', 'V & number' has a combined constraint of
19394+ // 'string & number | number & number' which reduces to just 'number'.
19395+ // This also handles type parameters, as a type parameter with a union constraint compared against a union
19396+ // needs to have its constraint hoisted into an intersection with said type parameter, this way
19397+ // the type param can be compared with itself in the target (with the influence of its constraint to match other parts)
19398+ // For example, if `T extends 1 | 2` and `U extends 2 | 3` and we compare `T & U` to `T & U & (1 | 2 | 3)`
19399+ const constraint = getEffectiveConstraintOfIntersection(source.flags & TypeFlags.Intersection ? (source as IntersectionType).types: [source], !!(target.flags & TypeFlags.Union));
19400+ if (constraint && everyType(constraint, c => c !== source)) { // Skip comparison if expansion contains the source itself
19401+ // TODO: Stack errors so we get a pyramid for the "normal" comparison above, _and_ a second for this
19402+ result = isRelatedTo(constraint, target, RecursionFlags.Source, /*reportErrors*/ false, /*headMessage*/ undefined, intersectionState);
19403+ }
19404+ }
1938519405 if (result) {
1938619406 resetErrorInfo(saveErrorInfo);
1938719407 }
@@ -19440,28 +19460,6 @@ namespace ts {
1944019460 if (result = unionOrIntersectionRelatedTo(source, target, reportErrors, intersectionState)) {
1944119461 return result;
1944219462 }
19443- if (source.flags & TypeFlags.Intersection || source.flags & TypeFlags.TypeParameter && target.flags & TypeFlags.Union) {
19444- // The combined constraint of an intersection type is the intersection of the constraints of
19445- // the constituents. When an intersection type contains instantiable types with union type
19446- // constraints, there are situations where we need to examine the combined constraint. One is
19447- // when the target is a union type. Another is when the intersection contains types belonging
19448- // to one of the disjoint domains. For example, given type variables T and U, each with the
19449- // constraint 'string | number', the combined constraint of 'T & U' is 'string | number' and
19450- // we need to check this constraint against a union on the target side. Also, given a type
19451- // variable V constrained to 'string | number', 'V & number' has a combined constraint of
19452- // 'string & number | number & number' which reduces to just 'number'.
19453- // This also handles type parameters, as a type parameter with a union constraint compared against a union
19454- // needs to have its constraint hoisted into an intersection with said type parameter, this way
19455- // the type param can be compared with itself in the target (with the influence of its constraint to match other parts)
19456- // For example, if `T extends 1 | 2` and `U extends 2 | 3` and we compare `T & U` to `T & U & (1 | 2 | 3)`
19457- const constraint = getEffectiveConstraintOfIntersection(source.flags & TypeFlags.Intersection ? (source as IntersectionType).types: [source], !!(target.flags & TypeFlags.Union));
19458- if (constraint && everyType(constraint, c => c !== source)) { // Skip comparison if expansion contains the source itself
19459- // TODO: Stack errors so we get a pyramid for the "normal" comparison above, _and_ a second for this
19460- if (result = isRelatedTo(constraint, target, RecursionFlags.Source, /*reportErrors*/ false, /*headMessage*/ undefined, intersectionState)) {
19461- return result;
19462- }
19463- }
19464- }
1946519463 // The ordered decomposition above doesn't handle all cases. Specifically, we also need to handle:
1946619464 // Source is instantiable (e.g. source has union or intersection constraint).
1946719465 // Source is an object, target is a union (e.g. { a, b: boolean } <=> { a, b: true } | { a, b: false }).
0 commit comments