@@ -222,14 +222,15 @@ def square_root_mod_prime(a, p):
222222 range_top = min (0x7FFFFFFF , p )
223223 else :
224224 range_top = p
225- for b in xrange (2 , range_top ):
225+ for b in xrange (2 , range_top ): # pragma: no branch
226226 if jacobi (b * b - 4 * a , p ) == - 1 :
227227 f = (a , - b , 1 )
228228 ff = polynomial_exp_mod ((0 , 1 ), (p + 1 ) // 2 , f , p )
229229 if ff [1 ]:
230230 raise SquareRootError ("p is not prime" )
231231 return ff [0 ]
232- raise RuntimeError ("No b found." )
232+ # just an assertion
233+ raise RuntimeError ("No b found." ) # pragma: no cover
233234
234235
235236# because all the inverse_mod code is arch/environment specific, and coveralls
@@ -352,7 +353,7 @@ def factorization(n):
352353 q , r = divmod (n , d )
353354 if r == 0 :
354355 count = 1
355- while d <= n :
356+ while d <= n : # pragma: no branch
356357 n = q
357358 q , r = divmod (n , d )
358359 if r != 0 :
@@ -376,7 +377,8 @@ def factorization(n):
376377 if r == 0 : # d divides n. How many times?
377378 count = 1
378379 n = q
379- while d <= n : # As long as d might still divide n,
380+ # As long as d might still divide n,
381+ while d <= n : # pragma: no branch
380382 q , r = divmod (n , d ) # see if it does.
381383 if r != 0 :
382384 break
0 commit comments