@@ -9,8 +9,8 @@ context("simple neural network execution with keras")
99num_pred <- names(iris )[1 : 4 ]
1010
1111iris_keras <-
12- mlp(mode = " classification" , hidden_units = 2 ) %> %
13- set_engine(" keras" , verbose = 0 , epochs = 10 )
12+ mlp(mode = " classification" , hidden_units = 2 , epochs = 10 ) %> %
13+ set_engine(" keras" , verbose = 0 )
1414
1515ctrl <- fit_control(verbosity = 1 , catch = FALSE )
1616caught_ctrl <- fit_control(verbosity = 1 , catch = TRUE )
@@ -130,8 +130,8 @@ mtcars <- as.data.frame(scale(mtcars))
130130
131131num_pred <- names(mtcars )[3 : 6 ]
132132
133- car_basic <- mlp(mode = " regression" ) %> %
134- set_engine(" keras" , verbose = 0 , epochs = 10 )
133+ car_basic <- mlp(mode = " regression" , epochs = 10 ) %> %
134+ set_engine(" keras" , verbose = 0 )
135135
136136bad_keras_reg <-
137137 mlp(mode = " regression" ) %> %
@@ -176,8 +176,8 @@ test_that('keras regression prediction', {
176176 skip_if_not_installed(" keras" )
177177
178178 xy_fit <- parsnip :: fit_xy(
179- mlp(mode = " regression" , hidden_units = 2 ) %> %
180- set_engine(" keras" , epochs = 500 , penalty = .1 , verbose = 0 ),
179+ mlp(mode = " regression" , hidden_units = 2 , epochs = 500 , penalty = .1 ) %> %
180+ set_engine(" keras" , verbose = 0 ),
181181 x = mtcars [, c(" cyl" , " disp" )],
182182 y = mtcars $ mpg ,
183183 control = ctrl
@@ -211,8 +211,8 @@ test_that('multivariate nnet formula', {
211211 skip_if_not_installed(" keras" )
212212
213213 nnet_form <-
214- mlp(mode = " regression" , hidden_units = 3 ) %> %
215- set_engine(" keras" , penalty = 0.01 , verbose = 0 ) %> %
214+ mlp(mode = " regression" , hidden_units = 3 , penalty = 0.01 ) %> %
215+ set_engine(" keras" , verbose = 0 ) %> %
216216 parsnip :: fit(
217217 cbind(V1 , V2 , V3 ) ~ . ,
218218 data = nn_dat [- (1 : 5 ),]
@@ -226,8 +226,8 @@ test_that('multivariate nnet formula', {
226226 keras :: backend()$ clear_session()
227227
228228 nnet_xy <-
229- mlp(mode = " regression" , hidden_units = 3 ) %> %
230- set_engine(" keras" , penalty = 0.01 , verbose = 0 ) %> %
229+ mlp(mode = " regression" , hidden_units = 3 , penalty = 0.01 ) %> %
230+ set_engine(" keras" , verbose = 0 ) %> %
231231 parsnip :: fit_xy(
232232 x = nn_dat [- (1 : 5 ), - (1 : 3 )],
233233 y = nn_dat [- (1 : 5 ), 1 : 3 ]
0 commit comments