|
| 1 | +```{r, child = "aaa.Rmd", include = FALSE} |
| 2 | +``` |
| 3 | + |
| 4 | +`r descr_models("rand_forest", "aorsf")` |
| 5 | + |
| 6 | +## Tuning Parameters |
| 7 | + |
| 8 | +```{r aorsf-param-info, echo = FALSE} |
| 9 | +defaults <- |
| 10 | + tibble::tibble(parsnip = c("trees", "min_n", "mtry"), |
| 11 | + default = c("500L", "5L", "ceiling(sqrt(n_predictors))")) |
| 12 | +
|
| 13 | +param <- |
| 14 | + rand_forest() %>% |
| 15 | + set_engine("aorsf") %>% |
| 16 | + set_mode("censored regression") %>% |
| 17 | + make_parameter_list(defaults) %>% |
| 18 | + distinct() |
| 19 | +``` |
| 20 | + |
| 21 | +This model has `r nrow(param)` tuning parameters: |
| 22 | + |
| 23 | +```{r aorsf-param-list, echo = FALSE, results = "asis"} |
| 24 | +param$item |
| 25 | +``` |
| 26 | + |
| 27 | +Additionally, this model has one engine-specific tuning parameter: |
| 28 | + |
| 29 | + * `split_min_stat`: Minimum test statistic required to split a node. Default is `3.841459` for the log-rank test, which is roughly a p-value of 0.05. |
| 30 | + |
| 31 | + |
| 32 | +# Translation from parsnip to the original package (censored regression) |
| 33 | + |
| 34 | +`r uses_extension("rand_forest", "aorsf", "censored regression")` |
| 35 | + |
| 36 | +```{r aorsf-creg} |
| 37 | +library(censored) |
| 38 | +
|
| 39 | +rand_forest() %>% |
| 40 | + set_engine("aorsf") %>% |
| 41 | + set_mode("censored regression") %>% |
| 42 | + translate() |
| 43 | +``` |
| 44 | + |
| 45 | +## Preprocessing requirements |
| 46 | + |
| 47 | +```{r child = "template-tree-split-factors.Rmd"} |
| 48 | +``` |
| 49 | + |
| 50 | +## Case weights |
| 51 | + |
| 52 | +```{r child = "template-uses-case-weights.Rmd"} |
| 53 | +``` |
| 54 | + |
| 55 | +## Other details |
| 56 | + |
| 57 | +Predictions of survival probability at a time exceeding the maximum observed event time are the predicted survival probability at the maximum observed time in the training data. |
| 58 | + |
| 59 | +## References |
| 60 | + |
| 61 | +- Jaeger BC, Long DL, Long DM, Sims M, Szychowski JM, Min YI, Mcclure LA, Howard G, Simon N. Oblique random survival forests. Annals of applied statistics 2019 Sep; 13(3):1847-83. DOI: 10.1214/19-AOAS1261 |
| 62 | + |
| 63 | +- Jaeger BC, Welden S, Lenoir K, Pajewski NM. aorsf: An R package for supervised learning using the oblique random survival forest. Journal of Open Source Software 2022, 7(77), 1 4705. https://doi.org/10.21105/joss.04705. |
| 64 | + |
| 65 | +- Jaeger BC, Welden S, Lenoir K, Speiser JL, Segar MW, Pandey A, Pajewski NM. Accelerated and interpretable oblique random survival forests. arXiv e-prints 2022 Aug; arXiv-2208. URL: https://arxiv.org/abs/2208.01129 |
0 commit comments