|
69 | 69 | #' \Sexpr[results=rd]{parsnip:::show_fit(parsnip:::linear_reg(), "keras")} |
70 | 70 | #' |
71 | 71 | #' When using `glmnet` models, there is the option to pass |
72 | | -#' multiple values (or no values) to the `penalty` argument. |
73 | | -#' This can have an effect on the model object results. When using |
74 | | -#' the `predict()` method in these cases, the return object type |
75 | | -#' depends on the value of `penalty`. If a single value is |
76 | | -#' given, the results will be a simple numeric vector. When |
77 | | -#' multiple values or no values for `penalty` are used in |
78 | | -#' `linear_reg()`, the `predict()` method will return a data frame with |
79 | | -#' columns `values` and `lambda`. |
| 72 | +#' multiple values (or no values) to the `penalty` argument. This |
| 73 | +#' can have an effect on the model object results. When using the |
| 74 | +#' `predict()` method in these cases, the return value depends on |
| 75 | +#' the value of `penalty`. When using `predict()`, only a single |
| 76 | +#' value of the penalty can be used. When predicting on multiple |
| 77 | +#' penalties, the `multi_predict()` function can be used. It |
| 78 | +#' returns a tibble with a list column called `.pred` that contains |
| 79 | +#' a tibble with all of the penalty results. |
80 | 80 | #' |
81 | 81 | #' For prediction, the `stan` engine can compute posterior |
82 | 82 | #' intervals analogous to confidence and prediction intervals. In |
@@ -130,7 +130,7 @@ print.linear_reg <- function(x, ...) { |
130 | 130 | cat("Linear Regression Model Specification (", x$mode, ")\n\n", sep = "") |
131 | 131 | model_printer(x, ...) |
132 | 132 |
|
133 | | - if(!is.null(x$method$fit$args)) { |
| 133 | + if (!is.null(x$method$fit$args)) { |
134 | 134 | cat("Model fit template:\n") |
135 | 135 | print(show_call(x)) |
136 | 136 | } |
|
0 commit comments