@@ -553,6 +553,7 @@ The following examples use consistent data sets throughout. For regression, we u
553553 Now we create the model fit object:
554554
555555 ``` {r}
556+ #| eval: false
556557 set.seed(1)
557558 linreg_reg_fit <- linreg_reg_spec |> fit(ridership ~ ., data = Chicago_train)
558559 linreg_reg_fit
@@ -561,6 +562,7 @@ The following examples use consistent data sets throughout. For regression, we u
561562 The holdout data can be predicted:
562563
563564 ``` {r}
565+ #| eval: false
564566 predict(linreg_reg_fit, Chicago_test)
565567 ```
566568
@@ -791,6 +793,7 @@ The following examples use consistent data sets throughout. For regression, we u
791793 Now we create the model fit object:
792794
793795 ``` {r}
796+ #| eval: false
794797 set.seed(1)
795798 logreg_cls_fit <- logreg_cls_spec |> fit(Class ~ ., data = data_train)
796799 logreg_cls_fit
@@ -799,6 +802,7 @@ The following examples use consistent data sets throughout. For regression, we u
799802 The holdout data can be predicted for both hard class predictions and probabilities. We'll bind these together into one tibble:
800803
801804 ``` {r}
805+ #| eval: false
802806 bind_cols(
803807 predict(logreg_cls_fit, data_test),
804808 predict(logreg_cls_fit, data_test, type = "prob")
@@ -1103,6 +1107,7 @@ The following examples use consistent data sets throughout. For regression, we u
11031107 Now we create the model fit object:
11041108
11051109 ``` {r}
1110+ #| eval: false
11061111 set.seed(1)
11071112 mlp_reg_fit <- mlp_reg_spec |> fit(ridership ~ ., data = Chicago_train)
11081113 mlp_reg_fit
@@ -1111,6 +1116,7 @@ The following examples use consistent data sets throughout. For regression, we u
11111116 The holdout data can be predicted:
11121117
11131118 ``` {r}
1119+ #| eval: false
11141120 predict(mlp_reg_fit, Chicago_test)
11151121 ```
11161122
@@ -1136,6 +1142,7 @@ The following examples use consistent data sets throughout. For regression, we u
11361142 Now we create the model fit object:
11371143
11381144 ``` {r}
1145+ #| eval: false
11391146 set.seed(1)
11401147 mlp_cls_fit <- mlp_cls_spec |> fit(Class ~ ., data = data_train)
11411148 mlp_cls_fit
@@ -1144,6 +1151,7 @@ The following examples use consistent data sets throughout. For regression, we u
11441151 The holdout data can be predicted for both hard class predictions and probabilities. We'll bind these together into one tibble:
11451152
11461153 ``` {r}
1154+ #| eval: false
11471155 bind_cols(
11481156 predict(mlp_cls_fit, data_test),
11491157 predict(mlp_cls_fit, data_test, type = "prob")
@@ -1365,6 +1373,7 @@ The following examples use consistent data sets throughout. For regression, we u
13651373 Now we create the model fit object:
13661374
13671375 ``` {r}
1376+ #| eval: false
13681377 set.seed(1)
13691378 mr_cls_fit <- mr_cls_spec |> fit(island ~ ., data = penguins_train)
13701379 mr_cls_fit
@@ -1373,6 +1382,7 @@ The following examples use consistent data sets throughout. For regression, we u
13731382 The holdout data can be predicted for both hard class predictions and probabilities. We'll bind these together into one tibble:
13741383
13751384 ``` {r}
1385+ #| eval: false
13761386 bind_cols(
13771387 predict(mr_cls_fit, penguins_test),
13781388 predict(mr_cls_fit, penguins_test, type = "prob")
0 commit comments