Skip to content

Commit 713bc94

Browse files
committed
Minor changes to mode and engine docs
1 parent 615686a commit 713bc94

31 files changed

+126
-98
lines changed

R/boost_tree.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,11 +29,12 @@
2929
#' functions. If parameters need to be modified, `update()` can be used
3030
#' in lieu of recreating the object from scratch.
3131
#'
32-
#' @param mode A single character string for the type of model.
32+
#' @param mode A single character string for the prediction outcome mode.
3333
#' Possible values for this model are "unknown", "regression", or
3434
#' "classification".
35-
#' @param engine A character string for the method of fitting. Possible engines
36-
#' are listed above. The default for this model is `"xgboost"`.
35+
#' @param engine A single character string specifying what computational engine
36+
#' to use for fitting. Possible engines are listed below. The default for this
37+
#' model is `"xgboost"`.
3738
#' @param mtry A number for the number (or proportion) of predictors that will
3839
#' be randomly sampled at each split when creating the tree models (`xgboost`
3940
#' only).

R/decision_tree.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,11 +21,12 @@
2121
#' functions. If parameters need to be modified, `update()` can be used
2222
#' in lieu of recreating the object from scratch.
2323
#'
24-
#' @param mode A single character string for the type of model.
24+
#' @param mode A single character string for the prediction outcome mode.
2525
#' Possible values for this model are "unknown", "regression", or
2626
#' "classification".
27-
#' @param engine A character string for the method of fitting. Possible engines
28-
#' are listed above. The default for this model is `"rpart"`.
27+
#' @param engine A single character string specifying what computational engine
28+
#' to use for fitting. Possible engines are listed below. The default for this
29+
#' model is `"rpart"`.
2930
#' @param cost_complexity A positive number for the the cost/complexity
3031
#' parameter (a.k.a. `Cp`) used by CART models (`rpart` only).
3132
#' @param tree_depth An integer for maximum depth of the tree.

R/linear_reg.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -16,10 +16,11 @@
1616
#' here (`NULL`), the values are taken from the underlying model
1717
#' functions. If parameters need to be modified, `update()` can be used
1818
#' in lieu of recreating the object from scratch.
19-
#' @param mode A single character string for the type of model.
19+
#' @param mode A single character string for the prediction outcome mode.
2020
#' The only possible value for this model is "regression".
21-
#' @param engine A character string for the method of fitting. Possible engines
22-
#' are listed above. The default for this model is `"lm"`.
21+
#' @param engine A single character string specifying what computational engine
22+
#' to use for fitting. Possible engines are listed below. The default for this
23+
#' model is `"lm"`.
2324
#' @param penalty A non-negative number representing the total
2425
#' amount of regularization (`glmnet`, `keras`, and `spark` only).
2526
#' For `keras` models, this corresponds to purely L2 regularization

R/logistic_reg.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -16,10 +16,11 @@
1616
#' here (`NULL`), the values are taken from the underlying model
1717
#' functions. If parameters need to be modified, `update()` can be used
1818
#' in lieu of recreating the object from scratch.
19-
#' @param mode A single character string for the type of model.
19+
#' @param mode A single character string for the prediction outcome mode.
2020
#' The only possible value for this model is "classification".
21-
#' @param engine A character string for the method of fitting. Possible engines
22-
#' are listed above. The default for this model is `"glm"`.
21+
#' @param engine A single character string specifying what computational engine
22+
#' to use for fitting. Possible engines are listed below. The default for this
23+
#' model is `"glm"`.
2324
#' @param penalty A non-negative number representing the total
2425
#' amount of regularization (`glmnet`, `LiblineaR`, `keras`, and `spark` only).
2526
#' For `keras` models, this corresponds to purely L2 regularization

R/mars.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,11 +22,12 @@
2222
#' functions. If parameters need to be modified, `update()` can be used
2323
#' in lieu of recreating the object from scratch.
2424
#'
25-
#' @param mode A single character string for the type of model.
25+
#' @param mode A single character string for the prediction outcome mode.
2626
#' Possible values for this model are "unknown", "regression", or
2727
#' "classification".
28-
#' @param engine A character string for the method of fitting. Possible engines
29-
#' are listed above. The default for this model is `"earth"`.
28+
#' @param engine A single character string specifying what computational engine
29+
#' to use for fitting. Possible engines are listed below. The default for this
30+
#' model is `"earth"`.
3031
#' @param num_terms The number of features that will be retained in the
3132
#' final model, including the intercept.
3233
#' @param prod_degree The highest possible interaction degree.

R/mlp.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -27,11 +27,12 @@
2727
#' If parameters need to be modified, `update()` can be used
2828
#' in lieu of recreating the object from scratch.
2929
#'
30-
#' @param mode A single character string for the type of model.
30+
#' @param mode A single character string for the prediction outcome mode.
3131
#' Possible values for this model are "unknown", "regression", or
3232
#' "classification".
33-
#' @param engine A character string for the method of fitting. Possible engines
34-
#' are listed above. The default for this model is `"nnet"`.
33+
#' @param engine A single character string specifying what computational engine
34+
#' to use for fitting. Possible engines are listed below. The default for this
35+
#' model is `"nnet"`.
3536
#' @param hidden_units An integer for the number of units in the hidden model.
3637
#' @param penalty A non-negative numeric value for the amount of weight
3738
#' decay.

R/multinom_reg.R

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -16,10 +16,11 @@
1616
#' here (`NULL`), the values are taken from the underlying model
1717
#' functions. If parameters need to be modified, `update()` can be used
1818
#' in lieu of recreating the object from scratch.
19-
#' @param mode A single character string for the type of model.
19+
#' @param mode A single character string for the prediction outcome mode.
2020
#' The only possible value for this model is "classification".
21-
#' @param engine A character string for the method of fitting. Possible engines
22-
#' are listed above. The default for this model is `"nnet"`.
21+
#' @param engine A single character string specifying what computational engine
22+
#' to use for fitting. Possible engines are listed below. The default for this
23+
#' model is `"nnet"`.
2324
#' @param penalty A non-negative number representing the total
2425
#' amount of regularization (`glmnet`, `keras`, and `spark` only).
2526
#' For `keras` models, this corresponds to purely L2 regularization
@@ -35,7 +36,7 @@
3536
#' The model can be created using the `fit()` function using the
3637
#' following _engines_:
3738
#' \itemize{
38-
#' \item \pkg{R}: `"glmnet"`, `"nnet"` (the default)
39+
#' \item \pkg{R}: `"nnet"` (the default), `"glmnet"`
3940
#' \item \pkg{Spark}: `"spark"`
4041
#' \item \pkg{keras}: `"keras"`
4142
#' }

R/nearest_neighbor.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -23,11 +23,12 @@
2323
#' here (`NULL`), the values are taken from the underlying model
2424
#' functions. If parameters need to be modified, `update()` can be used
2525
#' in lieu of recreating the object from scratch.
26-
#' @param mode A single character string for the type of model.
26+
#' @param mode A single character string for the prediction outcome mode.
2727
#' Possible values for this model are `"unknown"`, `"regression"`, or
2828
#' `"classification"`.
29-
#' @param engine A character string for the method of fitting. Possible engines
30-
#' are listed above. The default for this model is `"kknn"`.
29+
#' @param engine A single character string specifying what computational engine
30+
#' to use for fitting. Possible engines are listed below. The default for this
31+
#' model is `"kknn"`.
3132
#' @param neighbors A single integer for the number of neighbors
3233
#' to consider (often called `k`). For \pkg{kknn}, a value of 5
3334
#' is used if `neighbors` is not specified.

R/proportional_hazards.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -16,10 +16,11 @@
1616
#' functions. If parameters need to be modified, `update()` can be used
1717
#' in lieu of recreating the object from scratch.
1818
#'
19-
#' @param mode A single character string for the type of model.
19+
#' @param mode A single character string for the prediction outcome mode.
2020
#' Possible values for this model are "unknown", or "censored regression".
21-
#' @param engine A character string for the method of fitting. Possible engines
22-
#' are listed above. The default for this model is `"survival"`.
21+
#' @param engine A single character string specifying what computational engine
22+
#' to use for fitting. Possible engines are listed below. The default for this
23+
#' model is `"survival"`.
2324
#' @inheritParams linear_reg
2425
#'
2526
#' @details

R/rand_forest.R

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -20,11 +20,12 @@
2020
#' functions. If parameters need to be modified, `update()` can be used
2121
#' in lieu of recreating the object from scratch.
2222
#'
23-
#' @param mode A single character string for the type of model.
23+
#' @param mode A single character string for the prediction outcome mode.
2424
#' Possible values for this model are "unknown", "regression", or
2525
#' "classification".
26-
#' @param engine A character string for the method of fitting. Possible engines
27-
#' are listed above. The default for this model is `"ranger"`.
26+
#' @param engine A single character string specifying what computational engine
27+
#' to use for fitting. Possible engines are listed below. The default for this
28+
#' model is `"ranger"`.
2829
#' @param mtry An integer for the number of predictors that will
2930
#' be randomly sampled at each split when creating the tree models.
3031
#' @param trees An integer for the number of trees contained in

0 commit comments

Comments
 (0)