File tree Expand file tree Collapse file tree 2 files changed +34
-0
lines changed Expand file tree Collapse file tree 2 files changed +34
-0
lines changed Original file line number Diff line number Diff line change 15271527 min_rows(5, data, 5)
15281528
15291529
1530+ # arguments (proportional_hazards)
1531+
1532+ Code
1533+ basic %>% translate_args()
1534+ Output
1535+ list()
1536+
1537+ ---
1538+
1539+ Code
1540+ basic_incomplete %>% translate_args()
1541+ Condition
1542+ Error in `.check_glmnet_penalty_fit()`:
1543+ ! For the glmnet engine, `penalty` must be a single number (or a value of `tune()`).
1544+ * There are 0 values for `penalty`.
1545+ * To try multiple values for total regularization, use the tune package.
1546+ * To predict multiple penalties, use `multi_predict()`
1547+
15301548# arguments (rand_forest)
15311549
15321550 Code
Original file line number Diff line number Diff line change @@ -199,6 +199,22 @@ test_that("arguments (nearest_neighbor)", {
199199 expect_snapshot(translate_args(dist_power %> % set_engine(" kknn" )))
200200})
201201
202+
203+ # translate.proportional_hazards ------------------------------------------
204+ test_that(" arguments (proportional_hazards)" , {
205+ suppressMessages({
206+ basic <- proportional_hazards(penalty = 0.1 ) %> % set_engine(" glmnet" )
207+ basic_incomplete <- proportional_hazards() %> % set_engine(" glmnet" )
208+ })
209+
210+ # this is empty because the engines are not defined in parsnip
211+ expect_snapshot(basic %> % translate_args())
212+ # but we can check for the error if there is no penalty for glmnet
213+ expect_snapshot(error = TRUE ,
214+ basic_incomplete %> % translate_args()
215+ )
216+ })
217+
202218# translate.rand_forest --------------------------------------------------------
203219test_that(" arguments (rand_forest)" , {
204220 basic <- rand_forest(mode = " regression" )
You can’t perform that action at this time.
0 commit comments