@@ -19,7 +19,7 @@ test_that('primary arguments', {
1919 x = expr(missing_arg()),
2020 y = expr(missing_arg()),
2121 case.weights = expr(missing_arg()),
22- mtry = new_empty_quosure( 4 ),
22+ mtry = expr(min( ~ 4 , ncol( x )) ),
2323 num.threads = 1 ,
2424 verbose = FALSE ,
2525 seed = expr(sample.int(10 ^ 5 , 1 ))
@@ -29,7 +29,7 @@ test_that('primary arguments', {
2929 list (
3030 x = expr(missing_arg()),
3131 y = expr(missing_arg()),
32- mtry = new_empty_quosure( 4 )
32+ mtry = expr(min( ~ 4 , ncol( x )) )
3333 )
3434 )
3535 expect_equal(mtry_spark $ method $ fit $ args ,
@@ -83,7 +83,7 @@ test_that('primary arguments', {
8383 x = expr(missing_arg()),
8484 y = expr(missing_arg()),
8585 case.weights = expr(missing_arg()),
86- min.node.size = new_empty_quosure( 5 ),
86+ min.node.size = expr(min( ~ 5 , nrow( x )) ),
8787 num.threads = 1 ,
8888 verbose = FALSE ,
8989 seed = expr(sample.int(10 ^ 5 , 1 ))
@@ -93,117 +93,18 @@ test_that('primary arguments', {
9393 list (
9494 x = expr(missing_arg()),
9595 y = expr(missing_arg()),
96- nodesize = new_empty_quosure( 5 )
96+ nodesize = expr(min( ~ 5 , nrow( x )) )
9797 )
9898 )
9999 expect_equal(min_n_spark $ method $ fit $ args ,
100100 list (
101101 x = expr(missing_arg()),
102102 formula = expr(missing_arg()),
103103 type = " regression" ,
104- min_instances_per_node = new_empty_quosure( 5 ),
104+ min_instances_per_node = expr(min( ~ 5 , nrow( x )) ),
105105 seed = expr(sample.int(10 ^ 5 , 1 ))
106106 )
107107 )
108-
109- mtry_v <- rand_forest(mode = " classification" , mtry = varying())
110- mtry_v_ranger <- translate(mtry_v %> % set_engine(" ranger" ))
111- mtry_v_randomForest <- translate(mtry_v %> % set_engine(" randomForest" ))
112- mtry_v_spark <- translate(mtry_v %> % set_engine(" spark" ))
113- expect_equal(mtry_v_ranger $ method $ fit $ args ,
114- list (
115- x = expr(missing_arg()),
116- y = expr(missing_arg()),
117- case.weights = expr(missing_arg()),
118- mtry = new_empty_quosure(varying()),
119- num.threads = 1 ,
120- verbose = FALSE ,
121- seed = expr(sample.int(10 ^ 5 , 1 )),
122- probability = TRUE
123- )
124- )
125- expect_equal(mtry_v_randomForest $ method $ fit $ args ,
126- list (
127- x = expr(missing_arg()),
128- y = expr(missing_arg()),
129- mtry = new_empty_quosure(varying())
130- )
131- )
132- expect_equal(mtry_v_spark $ method $ fit $ args ,
133- list (
134- x = expr(missing_arg()),
135- formula = expr(missing_arg()),
136- type = " classification" ,
137- feature_subset_strategy = new_empty_quosure(varying()),
138- seed = expr(sample.int(10 ^ 5 , 1 ))
139- )
140- )
141-
142- trees_v <- rand_forest(mode = " regression" , trees = varying())
143- trees_v_ranger <- translate(trees_v %> % set_engine(" ranger" ))
144- trees_v_randomForest <- translate(trees_v %> % set_engine(" randomForest" ))
145- trees_v_spark <- translate(trees_v %> % set_engine(" spark" ))
146- expect_equal(trees_v_ranger $ method $ fit $ args ,
147- list (
148- x = expr(missing_arg()),
149- y = expr(missing_arg()),
150- case.weights = expr(missing_arg()),
151- num.trees = new_empty_quosure(varying()),
152- num.threads = 1 ,
153- verbose = FALSE ,
154- seed = expr(sample.int(10 ^ 5 , 1 ))
155- )
156- )
157- expect_equal(trees_v_randomForest $ method $ fit $ args ,
158- list (
159- x = expr(missing_arg()),
160- y = expr(missing_arg()),
161- ntree = new_empty_quosure(varying())
162- )
163- )
164- expect_equal(trees_v_spark $ method $ fit $ args ,
165- list (
166- x = expr(missing_arg()),
167- formula = expr(missing_arg()),
168- type = " regression" ,
169- num_trees = new_empty_quosure(varying()),
170- seed = expr(sample.int(10 ^ 5 , 1 ))
171- )
172- )
173-
174- min_n_v <- rand_forest(mode = " classification" , min_n = varying())
175- min_n_v_ranger <- translate(min_n_v %> % set_engine(" ranger" ))
176- min_n_v_randomForest <- translate(min_n_v %> % set_engine(" randomForest" ))
177- min_n_v_spark <- translate(min_n_v %> % set_engine(" spark" ))
178- expect_equal(min_n_v_ranger $ method $ fit $ args ,
179- list (
180- x = expr(missing_arg()),
181- y = expr(missing_arg()),
182- case.weights = expr(missing_arg()),
183- min.node.size = new_empty_quosure(varying()),
184- num.threads = 1 ,
185- verbose = FALSE ,
186- seed = expr(sample.int(10 ^ 5 , 1 )),
187- probability = TRUE
188- )
189- )
190- expect_equal(min_n_v_randomForest $ method $ fit $ args ,
191- list (
192- x = expr(missing_arg()),
193- y = expr(missing_arg()),
194- nodesize = new_empty_quosure(varying())
195- )
196- )
197- expect_equal(min_n_v_spark $ method $ fit $ args ,
198- list (
199- x = expr(missing_arg()),
200- formula = expr(missing_arg()),
201- type = " classification" ,
202- min_instances_per_node = new_empty_quosure(varying()),
203- seed = expr(sample.int(10 ^ 5 , 1 ))
204- )
205- )
206-
207108})
208109
209110test_that(' engine arguments' , {
@@ -241,50 +142,6 @@ test_that('engine arguments', {
241142 )
242143 )
243144
244- ranger_samp_frac <- rand_forest(mode = " regression" )
245- expect_equal(
246- translate(ranger_samp_frac %> %
247- set_engine(" ranger" , sample.fraction = varying()))$ method $ fit $ args ,
248- list (
249- x = expr(missing_arg()),
250- y = expr(missing_arg()),
251- case.weights = expr(missing_arg()),
252- sample.fraction = new_empty_quosure(varying()),
253- num.threads = 1 ,
254- verbose = FALSE ,
255- seed = expr(sample.int(10 ^ 5 , 1 ))
256- )
257- )
258-
259-
260- randomForest_votes_v <-
261- rand_forest(mode = " regression" )
262- expect_equal(
263- translate(randomForest_votes_v %> %
264- set_engine(" randomForest" , norm.votes = FALSE , sampsize = varying()))$ method $ fit $ args ,
265- list (
266- x = expr(missing_arg()),
267- y = expr(missing_arg()),
268- norm.votes = new_empty_quosure(FALSE ),
269- sampsize = new_empty_quosure(varying())
270- )
271- )
272-
273- spark_bins_v <-
274- rand_forest(mode = " regression" )
275- expect_equal(
276- translate(spark_bins_v %> %
277- set_engine(" spark" , uid = " id label" , max_bins = varying()))$ method $ fit $ args ,
278- list (
279- x = expr(missing_arg()),
280- formula = expr(missing_arg()),
281- type = " regression" ,
282- uid = new_empty_quosure(" id label" ),
283- max_bins = new_empty_quosure(varying()),
284- seed = expr(sample.int(10 ^ 5 , 1 ))
285- )
286- )
287-
288145})
289146
290147
0 commit comments