@@ -151,109 +151,3 @@ test_that("workflow with tunable recipe and model", {
151151 c(rep(" model_spec" , 9 ), rep(" recipe" , 4 ))
152152 )
153153})
154-
155- # ------------------------------------------------------------------------------
156- # test specific values
157-
158-
159- test_that(' test tunable parameter values' , {
160- # depends on whether tune >= 0.1.6.9001 is installed
161- skip_if(inherits(try(tunable(), silent = TRUE ), " try-error" ))
162-
163- print_parameters <- function (x ) {
164- params <- tunable(x )
165- info <- params $ call_info
166- names(info ) <- params $ names
167- print(info )
168- invisible (NULL )
169- }
170-
171- expect_snapshot(
172- boost_tree(trees = tune(), min_n = tune(), sample_size = tune()) %> %
173- set_engine(' C5.0' ) %> %
174- print_parameters()
175- )
176-
177- expect_snapshot(
178- rules :: C5_rules(trees = tune(), min_n = tune()) %> %
179- set_engine(' C5.0' ) %> %
180- print_parameters()
181- )
182-
183- expect_snapshot(
184- decision_tree(min_n = tune()) %> %
185- set_engine(' C5.0' ) %> %
186- print_parameters()
187- )
188-
189- expect_snapshot(
190- logistic_reg(penalty = tune()) %> %
191- set_engine(' brulee' ) %> %
192- print_parameters()
193- )
194-
195- expect_snapshot(
196- mars(prod_degree = tune()) %> %
197- set_engine(' earth' ) %> %
198- set_mode(' classification' ) %> %
199- print_parameters()
200- )
201-
202- expect_snapshot(
203- multinom_reg(penalty = tune()) %> %
204- set_engine(' brulee' ) %> %
205- print_parameters()
206- )
207-
208- expect_snapshot(
209- rand_forest(mtry = tune(), min_n = tune()) %> %
210- set_engine(' randomForest' ) %> %
211- set_mode(' classification' ) %> %
212- print_parameters()
213- )
214-
215- expect_snapshot(
216- rand_forest(mtry = tune(), min_n = tune()) %> %
217- set_engine(' ranger' ) %> %
218- set_mode(' classification' ) %> %
219- print_parameters()
220- )
221-
222- expect_snapshot(
223- linear_reg(penalty = tune()) %> %
224- set_engine(' brulee' ) %> %
225- print_parameters()
226- )
227-
228- expect_snapshot(
229- boost_tree(
230- tree_depth = tune(),
231- trees = tune(),
232- learn_rate = tune(),
233- min_n = tune(),
234- loss_reduction = tune(),
235- sample_size = tune(),
236- stop_iter = tune()
237- ) %> %
238- set_engine(' xgboost' ) %> %
239- set_mode(' classification' ) %> %
240- print_parameters()
241- )
242-
243- expect_snapshot(
244- mlp(
245- hidden_units = tune(),
246- penalty = tune(),
247- dropout = tune(),
248- epochs = tune(),
249- activation = tune()
250- ) %> %
251- set_engine(' brulee' ) %> %
252- set_mode(' classification' ) %> %
253- print_parameters()
254- )
255-
256- })
257-
258-
259-
0 commit comments