|
| 1 | +## A sample heap data structure ## |
| 2 | +from collections import deque |
| 3 | + |
| 4 | +class MaxHeap: |
| 5 | + def __init__(self, arr=[]): |
| 6 | + self.heap = deque() |
| 7 | + self.size = 0 |
| 8 | + if len(arr) > 0: |
| 9 | + self.size = len(arr) |
| 10 | + self.heapify(arr) |
| 11 | + |
| 12 | + # runtime: O(logn) aka the height of the heap |
| 13 | + def getMax(self): |
| 14 | + if self.size > 0: |
| 15 | + ret = self.heap.popleft() |
| 16 | + self.size -= 1 |
| 17 | + if self.size > 0: |
| 18 | + self.heap.appendleft(self.heap.pop()) |
| 19 | + self.bubbleDown(0) |
| 20 | + return ret |
| 21 | + |
| 22 | + # runtime: O(1) |
| 23 | + def peek(self): |
| 24 | + if self.size > 0: |
| 25 | + return self.heap[0] |
| 26 | + |
| 27 | + # runtime: O(logn) aka the height of the heap |
| 28 | + def push(self, val): |
| 29 | + self.size += 1 |
| 30 | + self.heap.append(val) |
| 31 | + self.bubbleUp() |
| 32 | + |
| 33 | + # runtime: O(nlogn) |
| 34 | + def heapify(self, arr): |
| 35 | + self.heap = deque(arr) |
| 36 | + for i in xrange(self.size-1, -1, -1): |
| 37 | + self.bubbleDown(i) |
| 38 | + |
| 39 | + # runtime: O(1) |
| 40 | + def isEmpty(self): |
| 41 | + return self.size == 0 |
| 42 | + |
| 43 | + def bubbleDown(self, index): |
| 44 | + if self.size > 0: |
| 45 | + i = index |
| 46 | + h = self.heap |
| 47 | + withinBounds = 2*i + 2 < self.size |
| 48 | + while withinBounds and (h[i][1] < h[2*i + 1][1] or h[i][1] < h[2*i + 2][1]): |
| 49 | + if h[i][1] < h[2*i + 1][1] and h[i][1] < h[2*i + 2][1]: |
| 50 | + if h[2*i + 1][1] > h[2*i + 2][1]: |
| 51 | + h[i], h[2*i + 1] = h[2*i + 1], h[i] |
| 52 | + i = 2*i + 1 |
| 53 | + else: |
| 54 | + h[i], h[2*i + 2] = h[2*i + 2], h[i] |
| 55 | + i = 2*i + 2 |
| 56 | + elif h[i][1] < h[2*i + 1][1]: |
| 57 | + h[i], h[2*i + 1] = h[2*i + 1], h[i] |
| 58 | + i = 2*i + 1 |
| 59 | + elif h[i][1] < h[2*i + 2][1]: |
| 60 | + h[i], h[2*i + 2] = h[2*i + 2], h[i] |
| 61 | + i = 2*i + 2 |
| 62 | + withinBounds = 2*i + 2 < self.size |
| 63 | + |
| 64 | + if 2*i + 1 < self.size and h[i][1] < h[2*i + 1][1]: |
| 65 | + h[i], h[2*i + 1] = h[2*i + 1], h[i] |
| 66 | + elif 2*i + 2 < self.size and h[i][1] < h[2*i + 2][1]: |
| 67 | + h[i], h[2*i + 2] = h[2*i + 2], h[i] |
| 68 | + |
| 69 | + def bubbleUp(self): |
| 70 | + if self.size > 0: |
| 71 | + i = self.size-1 |
| 72 | + h = self.heap |
| 73 | + withinBounds = i/2 >= 0 |
| 74 | + while withinBounds and (h[i] > h[i/2]): |
| 75 | + h[i/2], h[i] = h[i], h[i/2] |
| 76 | + i /= 2 |
| 77 | + withinBounds = i/2 >= 0 |
| 78 | + |
| 79 | +from collections import Counter |
| 80 | + |
| 81 | +def topKFrequent(nums, k): |
| 82 | + freqs = Counter(nums) |
| 83 | + h = MaxHeap(freqs.items()) |
| 84 | + ret = list() |
| 85 | + while k > 0: |
| 86 | + ret.append(h.getMax()[0]) |
| 87 | + k -=1 |
| 88 | + return ret |
| 89 | + |
| 90 | +def testTopKFrequent(): |
| 91 | + assert set(topKFrequent([], 0)) == set([]) |
| 92 | + assert set(topKFrequent([1], 1)) == set([1]) |
| 93 | + assert set(topKFrequent([-1, -1], 1)) == set([-1]) |
| 94 | + assert set(topKFrequent([1,1,1,2,2,3], 2)) == set([1, 2]) |
| 95 | + assert set(topKFrequent([-1,-1,-1,2,2,3], 2)) == set([-1, 2]) |
| 96 | + assert set(topKFrequent([1,1,1,2,2,3], 3)) == set([1, 2, 3]) |
| 97 | + assert set(topKFrequent([1,1,1,2,2,2,3,3,3], 3)) == set([1, 2, 3]) |
| 98 | + assert set(topKFrequent([4,1,-1,2,-1,2,3], 2)) == set([-1, 2]) |
| 99 | + assert set(topKFrequent([3,2,3,1,2,4,5,5,6,7,7,8,2,3,1,1,1,10,11,5,6,2,4,7,8,5,6], 10)) == set([1,2,5,3,7,6,4,8,10,11]) |
| 100 | + |
| 101 | +def main(): |
| 102 | + testTopKFrequent() |
| 103 | + |
| 104 | +if __name__ == "__main__": |
| 105 | + main() |
0 commit comments