|
| 1 | +/** |
| 2 | + * @license |
| 3 | + * Copyright 2019 Google Inc. All Rights Reserved. |
| 4 | + * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | + * you may not use this file except in compliance with the License. |
| 6 | + * You may obtain a copy of the License at |
| 7 | + * |
| 8 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | + * |
| 10 | + * Unless required by applicable law or agreed to in writing, software |
| 11 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | + * See the License for the specific language governing permissions and |
| 14 | + * limitations under the License. |
| 15 | + * ============================================================================= |
| 16 | + */ |
| 17 | + |
| 18 | +import * as tf from '../index'; |
| 19 | +import {ALL_ENVS, describeWithFlags} from '../jasmine_util'; |
| 20 | +import {expectArraysEqual} from '../test_util'; |
| 21 | + |
| 22 | +const txtArr = [ |
| 23 | + 'Hello TensorFlow.js!', '𝌆', 'Pre\u2014trained models with Base64 ops\u002e', |
| 24 | + 'how about these? 🌍💻🍕', 'https://www.tensorflow.org/js', 'àβÇdéf', |
| 25 | + '你好, 世界', `Build, train, & deploy |
| 26 | +ML models in JS` |
| 27 | +]; |
| 28 | +const urlSafeB64 = [ |
| 29 | + 'SGVsbG8gVGVuc29yRmxvdy5qcyE', '8J2Mhg', |
| 30 | + 'UHJl4oCUdHJhaW5lZCBtb2RlbHMgd2l0aCBCYXNlNjQgb3BzLg', |
| 31 | + 'aG93IGFib3V0IHRoZXNlPyDwn4yN8J-Su_CfjZU', |
| 32 | + 'aHR0cHM6Ly93d3cudGVuc29yZmxvdy5vcmcvanM', 'w6DOssOHZMOpZg', |
| 33 | + '5L2g5aW9LCDkuJbnlYw', 'QnVpbGQsIHRyYWluLCAmIGRlcGxveQpNTCBtb2RlbHMgaW4gSlM' |
| 34 | +]; |
| 35 | +const urlSafeB64Pad = [ |
| 36 | + 'SGVsbG8gVGVuc29yRmxvdy5qcyE=', '8J2Mhg==', |
| 37 | + 'UHJl4oCUdHJhaW5lZCBtb2RlbHMgd2l0aCBCYXNlNjQgb3BzLg==', |
| 38 | + 'aG93IGFib3V0IHRoZXNlPyDwn4yN8J-Su_CfjZU=', |
| 39 | + 'aHR0cHM6Ly93d3cudGVuc29yZmxvdy5vcmcvanM=', 'w6DOssOHZMOpZg==', |
| 40 | + '5L2g5aW9LCDkuJbnlYw=', 'QnVpbGQsIHRyYWluLCAmIGRlcGxveQpNTCBtb2RlbHMgaW4gSlM=' |
| 41 | +]; |
| 42 | + |
| 43 | +describeWithFlags('encodeBase64', ALL_ENVS, () => { |
| 44 | + it('scalar', async () => { |
| 45 | + const a = tf.scalar(txtArr[1], 'string'); |
| 46 | + const r = tf.encodeBase64(a); |
| 47 | + expect(r.shape).toEqual([]); |
| 48 | + expectArraysEqual(await r.data(), urlSafeB64[1]); |
| 49 | + }); |
| 50 | + it('1D padded', async () => { |
| 51 | + const a = tf.tensor1d([txtArr[2]], 'string'); |
| 52 | + const r = tf.encodeBase64(a, true); |
| 53 | + expect(r.shape).toEqual([1]); |
| 54 | + expectArraysEqual(await r.data(), [urlSafeB64Pad[2]]); |
| 55 | + }); |
| 56 | + it('2D', async () => { |
| 57 | + const a = tf.tensor2d(txtArr, [2, 4], 'string'); |
| 58 | + const r = tf.encodeBase64(a, false); |
| 59 | + expect(r.shape).toEqual([2, 4]); |
| 60 | + expectArraysEqual(await r.data(), urlSafeB64); |
| 61 | + }); |
| 62 | + it('3D padded', async () => { |
| 63 | + const a = tf.tensor3d(txtArr, [2, 2, 2], 'string'); |
| 64 | + const r = tf.encodeBase64(a, true); |
| 65 | + expect(r.shape).toEqual([2, 2, 2]); |
| 66 | + expectArraysEqual(await r.data(), urlSafeB64Pad); |
| 67 | + }); |
| 68 | +}); |
| 69 | + |
| 70 | +describeWithFlags('decodeBase64', ALL_ENVS, () => { |
| 71 | + it('scalar', async () => { |
| 72 | + const a = tf.scalar(urlSafeB64[1], 'string'); |
| 73 | + const r = tf.decodeBase64(a); |
| 74 | + expect(r.shape).toEqual([]); |
| 75 | + expectArraysEqual(await r.data(), txtArr[1]); |
| 76 | + }); |
| 77 | + it('1D padded', async () => { |
| 78 | + const a = tf.tensor1d([urlSafeB64Pad[2]], 'string'); |
| 79 | + const r = tf.decodeBase64(a); |
| 80 | + expect(r.shape).toEqual([1]); |
| 81 | + expectArraysEqual(await r.data(), [txtArr[2]]); |
| 82 | + }); |
| 83 | + it('2D', async () => { |
| 84 | + const a = tf.tensor2d(urlSafeB64, [2, 4], 'string'); |
| 85 | + const r = tf.decodeBase64(a); |
| 86 | + expect(r.shape).toEqual([2, 4]); |
| 87 | + expectArraysEqual(await r.data(), txtArr); |
| 88 | + }); |
| 89 | + it('3D padded', async () => { |
| 90 | + const a = tf.tensor3d(urlSafeB64Pad, [2, 2, 2], 'string'); |
| 91 | + const r = tf.decodeBase64(a); |
| 92 | + expect(r.shape).toEqual([2, 2, 2]); |
| 93 | + expectArraysEqual(await r.data(), txtArr); |
| 94 | + }); |
| 95 | +}); |
| 96 | + |
| 97 | +describeWithFlags('encodeBase64-decodeBase64', ALL_ENVS, () => { |
| 98 | + it('round-trip', async () => { |
| 99 | + const s = [txtArr.join('')]; |
| 100 | + const a = tf.tensor(s, [1], 'string'); |
| 101 | + const b = tf.encodeBase64(a); |
| 102 | + const c = tf.decodeBase64(b); |
| 103 | + expectArraysEqual(await c.data(), s); |
| 104 | + }); |
| 105 | +}); |
0 commit comments