|
| 1 | +from tensor2tensor.data_generators import problem |
| 2 | +from tensor2tensor.utils import registry |
| 3 | +from tensor2tensor.models import transformer |
| 4 | +from tensor2tensor.utils import modality |
| 5 | +from tensor2tensor.layers import common_layers |
| 6 | +from tensor2tensor.data_generators import text_encoder |
| 7 | +import random |
| 8 | +import tensorflow as tf |
| 9 | +import numpy as np |
| 10 | +from tensor2tensor.data_generators import generator_utils |
| 11 | +import os |
| 12 | +from subprocess import call |
| 13 | +import tarfile |
| 14 | +import wave |
| 15 | + |
| 16 | + |
| 17 | +_LIBRISPEECH_TRAIN_DATASETS = [ |
| 18 | + [ |
| 19 | + "http://www.openslr.org/resources/12/train-clean-100.tar.gz", # pylint: disable=line-too-long |
| 20 | + "train-clean-100" |
| 21 | + ], |
| 22 | + [ |
| 23 | + "http://www.openslr.org/resources/12/train-clean-360.tar.gz", |
| 24 | + "train-clean-360" |
| 25 | + ], |
| 26 | + [ |
| 27 | + "http://www.openslr.org/resources/12/train-other-500.tar.gz", |
| 28 | + "train-other-500" |
| 29 | + ], |
| 30 | +] |
| 31 | +_LIBRISPEECH_TEST_DATASETS = [ |
| 32 | + [ |
| 33 | + "http://www.openslr.org/resources/12/dev-clean.tar.gz", |
| 34 | + "dev-clean" |
| 35 | + ], |
| 36 | + [ |
| 37 | + "http://www.openslr.org/resources/12/dev-other.tar.gz", |
| 38 | + "dev-other" |
| 39 | + ], |
| 40 | +] |
| 41 | + |
| 42 | + |
| 43 | +def _collect_data(directory, input_ext, transcription_ext): |
| 44 | + """Traverses directory collecting input and target files.""" |
| 45 | + # Directory from string to tuple pair of strings |
| 46 | + # key: the filepath to a datafile including the datafile's basename. Example, |
| 47 | + # if the datafile was "/path/to/datafile.wav" then the key would be |
| 48 | + # "/path/to/datafile" |
| 49 | + # value: a pair of strings (media_filepath, label) |
| 50 | + data_files = dict() |
| 51 | + for root, _, filenames in os.walk(directory): |
| 52 | + transcripts = [filename for filename in filenames if transcription_ext in filename] |
| 53 | + for transcript in transcripts: |
| 54 | + basename = transcript.strip(transcription_ext) |
| 55 | + transcript_path = os.path.join(root, transcript) |
| 56 | + with open(transcript_path, 'r') as transcript_file: |
| 57 | + for transcript_line in transcript_file: |
| 58 | + line_contents = transcript_line.split(" ", 1) |
| 59 | + assert len(line_contents) == 2 |
| 60 | + media_base, label = line_contents |
| 61 | + key = os.path.join(root, media_base) |
| 62 | + assert key not in data_files |
| 63 | + media_name = "%s.%s"%(media_base, input_ext) |
| 64 | + media_path = os.path.join(root, media_name) |
| 65 | + data_files[key] = (media_path, label) |
| 66 | + return data_files |
| 67 | + |
| 68 | + |
| 69 | +def _get_audio_data(filepath): |
| 70 | + # Construct a true .wav file. |
| 71 | + out_filepath = filepath.strip(".flac") + ".wav" |
| 72 | + # Assumes sox is installed on system. Sox converts from FLAC to WAV. |
| 73 | + call(["sox", filepath, out_filepath]) |
| 74 | + wav_file = wave.open(open(out_filepath)) |
| 75 | + frame_count = wav_file.getnframes() |
| 76 | + byte_array = wav_file.readframes(frame_count) |
| 77 | + |
| 78 | + data = np.fromstring(byte_array, np.uint8).tolist() |
| 79 | + return data, frame_count, wav_file.getsampwidth(), wav_file.getnchannels() |
| 80 | + |
| 81 | + |
| 82 | +class LibrispeechTextEncoder(text_encoder.TextEncoder): |
| 83 | + |
| 84 | + def encode(self, s): |
| 85 | + return [self._num_reserved_ids + ord(c) for c in s] |
| 86 | + |
| 87 | + def decode(self, ids): |
| 88 | + """Transform a sequence of int ids into a human-readable string. |
| 89 | + EOS is not expected in ids. |
| 90 | + Args: |
| 91 | + ids: list of integers to be converted. |
| 92 | + Returns: |
| 93 | + s: human-readable string. |
| 94 | + """ |
| 95 | + decoded_ids = [] |
| 96 | + for id_ in ids: |
| 97 | + if 0 <= id_ < self._num_reserved_ids: |
| 98 | + decoded_ids.append(RESERVED_TOKENS[int(id_)]) |
| 99 | + else: |
| 100 | + decoded_ids.append(id_ - self._num_reserved_ids) |
| 101 | + return "".join([chr(d) for d in decoded_ids]) |
| 102 | + |
| 103 | + |
| 104 | + |
| 105 | +@registry.register_audio_modality |
| 106 | +class LibrispeechModality(modality.Modality): |
| 107 | + """Performs strided conv compressions for audio spectral data.""" |
| 108 | + |
| 109 | + def bottom(self, inputs): |
| 110 | + """Transform input from data space to model space. |
| 111 | + Args: |
| 112 | + inputs: A Tensor with shape [batch, ...] |
| 113 | + Returns: |
| 114 | + body_input: A Tensor with shape [batch, ?, ?, body_input_depth]. |
| 115 | + """ |
| 116 | + with tf.variable_scope(self.name): |
| 117 | + # TODO(aidangomez): Will need to sort out a better audio pipeline |
| 118 | + def xnet_resblock(x, filters, res_relu, name): |
| 119 | + with tf.variable_scope(name): |
| 120 | + # We only stride along the length dimension to preserve the spectral |
| 121 | + # bins (which are tiny in dimensionality relative to length) |
| 122 | + y = common_layers.separable_conv_block( |
| 123 | + x, |
| 124 | + filters, [((1, 1), (3, 3)), ((1, 1), (3, 3))], |
| 125 | + first_relu=True, |
| 126 | + padding="SAME", |
| 127 | + force2d=True, |
| 128 | + name="sep_conv_block") |
| 129 | + y = common_layers.pool(y, (3, 3), "MAX", "SAME", strides=(2, 1)) |
| 130 | + return y + common_layers.conv_block( |
| 131 | + x, |
| 132 | + filters, [((1, 1), (1, 1))], |
| 133 | + padding="SAME", |
| 134 | + strides=(2, 1), |
| 135 | + first_relu=res_relu, |
| 136 | + force2d=True, |
| 137 | + name="res_conv0") |
| 138 | + |
| 139 | + # Rescale from UINT8 to floats in [-1,-1] |
| 140 | + signals = (tf.to_float(inputs)-127)/128. |
| 141 | + #signals = tf.contrib.framework.nest.flatten(signals) |
| 142 | + signals = tf.squeeze(signals, [2, 3]) |
| 143 | + |
| 144 | + # `stfts` is a complex64 Tensor representing the Short-time Fourier Transform of |
| 145 | + # each signal in `signals`. Its shape is [batch_size, ?, fft_unique_bins] |
| 146 | + # where fft_unique_bins = fft_length // 2 + 1 = 513. |
| 147 | + stfts = tf.contrib.signal.stft(signals, frame_length=1024, frame_step=512, |
| 148 | + fft_length=1024) |
| 149 | + |
| 150 | + # An energy spectrogram is the magnitude of the complex-valued STFT. |
| 151 | + # A float32 Tensor of shape [batch_size, ?, 513]. |
| 152 | + magnitude_spectrograms = tf.abs(stfts) |
| 153 | + |
| 154 | + log_offset = 1e-6 |
| 155 | + log_magnitude_spectrograms = tf.log(magnitude_spectrograms + log_offset) |
| 156 | + |
| 157 | + # Warp the linear-scale, magnitude spectrograms into the mel-scale. |
| 158 | + num_spectrogram_bins = magnitude_spectrograms.shape[-1].value |
| 159 | + lower_edge_hertz, upper_edge_hertz, num_mel_bins = 80.0, 7600.0, 64 |
| 160 | + sample_rate = 16000 |
| 161 | + linear_to_mel_weight_matrix = tf.contrib.signal.linear_to_mel_weight_matrix( |
| 162 | + num_mel_bins, num_spectrogram_bins, sample_rate, lower_edge_hertz, |
| 163 | + upper_edge_hertz) |
| 164 | + mel_spectrograms = tf.tensordot( |
| 165 | + magnitude_spectrograms, linear_to_mel_weight_matrix, 1) |
| 166 | + # Note: Shape inference for `tf.tensordot` does not currently handle this case. |
| 167 | + mel_spectrograms.set_shape(magnitude_spectrograms.shape[:-1].concatenate( |
| 168 | + linear_to_mel_weight_matrix.shape[-1:])) |
| 169 | + |
| 170 | + # Try without the conversion to MFCCs, first. |
| 171 | + '''num_mfccs = 13 |
| 172 | + # Keep the first `num_mfccs` MFCCs. |
| 173 | + mfccs = tf.contrib.signal.mfccs_from_log_mel_spectrograms( |
| 174 | + log_mel_spectrograms)[..., :num_mfccs]''' |
| 175 | + |
| 176 | + x = tf.expand_dims(mel_spectrograms, 2) |
| 177 | + x.set_shape([None, None, None, num_mel_bins]) |
| 178 | + for i in xrange(self._model_hparams.audio_compression): |
| 179 | + x = xnet_resblock(x, 2**(i + 1), True, "compress_block_%d" % i) |
| 180 | + return xnet_resblock(x, self._body_input_depth, False, |
| 181 | + "compress_block_final") |
| 182 | + |
| 183 | + |
| 184 | +@registry.register_problem() |
| 185 | +class Librispeech(problem.Problem): |
| 186 | + """Problem spec for English word to dictionary definition.""" |
| 187 | + |
| 188 | + @property |
| 189 | + def is_character_level(self): |
| 190 | + return True |
| 191 | + |
| 192 | + @property |
| 193 | + def input_space_id(self): |
| 194 | + return problem.SpaceID.AUDIO_SPECTRAL |
| 195 | + |
| 196 | + @property |
| 197 | + def target_space_id(self): |
| 198 | + return problem.SpaceID.EN_CHR |
| 199 | + |
| 200 | + @property |
| 201 | + def num_shards(self): |
| 202 | + return 100 |
| 203 | + |
| 204 | + @property |
| 205 | + def use_subword_tokenizer(self): |
| 206 | + return False |
| 207 | + |
| 208 | + @property |
| 209 | + def num_dev_shards(self): |
| 210 | + return 1 |
| 211 | + |
| 212 | + @property |
| 213 | + def use_train_shards_for_dev(self): |
| 214 | + """If true, we only generate training data and hold out shards for dev.""" |
| 215 | + return False |
| 216 | + |
| 217 | + def feature_encoders(self, _): |
| 218 | + return { |
| 219 | + "inputs": text_encoder.TextEncoder(), |
| 220 | + "targets": LibrispeechTextEncoder(), |
| 221 | + } |
| 222 | + |
| 223 | + def example_reading_spec(self): |
| 224 | + data_fields = { |
| 225 | + "inputs": tf.VarLenFeature(tf.int64), |
| 226 | + #"audio/channel_count": tf.FixedLenFeature([], tf.int64), |
| 227 | + #"audio/sample_count": tf.FixedLenFeature([], tf.int64), |
| 228 | + #"audio/sample_width": tf.FixedLenFeature([], tf.int64), |
| 229 | + "targets": tf.VarLenFeature(tf.int64), |
| 230 | + } |
| 231 | + data_items_to_decoders = None |
| 232 | + return (data_fields, data_items_to_decoders) |
| 233 | + |
| 234 | + |
| 235 | + def generator(self, data_dir, tmp_dir, training, eos_list=None, start_from=0, how_many=0): |
| 236 | + eos_list = [1] if eos_list is None else eos_list |
| 237 | + datasets = (_LIBRISPEECH_TRAIN_DATASETS if training else _LIBRISPEECH_TEST_DATASETS) |
| 238 | + num_reserved_ids = self.feature_encoders(None)["targets"].num_reserved_ids |
| 239 | + i = 0 |
| 240 | + for url, subdir in datasets: |
| 241 | + filename = os.path.basename(url) |
| 242 | + compressed_file = generator_utils.maybe_download(tmp_dir, filename, url) |
| 243 | + |
| 244 | + read_type = "r:gz" if filename.endswith("tgz") else "r" |
| 245 | + with tarfile.open(compressed_file, read_type) as corpus_tar: |
| 246 | + # Create a subset of files that don't already exist. |
| 247 | + # tarfile.extractall errors when encountering an existing file |
| 248 | + # and tarfile.extract is extremely slow |
| 249 | + members = [] |
| 250 | + for f in corpus_tar: |
| 251 | + if not os.path.isfile(os.path.join(tmp_dir, f.name)): |
| 252 | + members.append(f) |
| 253 | + corpus_tar.extractall(tmp_dir, members=members) |
| 254 | + |
| 255 | + data_dir = os.path.join(tmp_dir, "LibriSpeech", subdir) |
| 256 | + data_files = _collect_data(data_dir, "flac", "txt") |
| 257 | + data_pairs = data_files.values() |
| 258 | + for media_file, text_data in sorted(data_pairs)[start_from:]: |
| 259 | + if how_many > 0 and i == how_many: |
| 260 | + return |
| 261 | + i += 1 |
| 262 | + audio_data, sample_count, sample_width, num_channels = _get_audio_data( |
| 263 | + media_file) |
| 264 | + label = [num_reserved_ids + ord(c) for c in text_data] + eos_list |
| 265 | + yield { |
| 266 | + "inputs": audio_data, |
| 267 | + "audio/channel_count": [num_channels], |
| 268 | + "audio/sample_count": [sample_count], |
| 269 | + "audio/sample_width": [sample_width], |
| 270 | + "targets": label |
| 271 | + } |
| 272 | + |
| 273 | + |
| 274 | + def generate_data(self, data_dir, tmp_dir, task_id=-1): |
| 275 | + train_paths = self.training_filepaths(data_dir, self.num_shards, shuffled=False) |
| 276 | + dev_paths = self.dev_filepaths(data_dir, self.num_dev_shards, shuffled=False) |
| 277 | + if self.use_train_shards_for_dev: |
| 278 | + all_paths = train_paths + dev_paths |
| 279 | + generator_utils.generate_files(self.generator(data_dir, tmp_dir, True), all_paths) |
| 280 | + generator_utils.shuffle_dataset(all_paths) |
| 281 | + else: |
| 282 | + generator_utils.generate_dataset_and_shuffle( |
| 283 | + self.generator(data_dir, tmp_dir, True), train_paths, |
| 284 | + self.generator(data_dir, tmp_dir, False), dev_paths) |
| 285 | + |
| 286 | + |
| 287 | + def hparams(self, defaults, unused_model_hparams): |
| 288 | + p = defaults |
| 289 | + p.stop_at_eos = int(False) |
| 290 | + p.input_modality = { "inputs": ("audio:librispeech_modality", None) } |
| 291 | + p.target_modality = (registry.Modalities.SYMBOL, 256) |
| 292 | + |
| 293 | + def preprocess_example(self, example, mode, hparams): |
| 294 | + return example |
| 295 | + |
| 296 | +# TODO: clean up hparams |
| 297 | +@registry.register_hparams |
| 298 | +def librispeech_hparams(): |
| 299 | + hparams = transformer.transformer_base_single_gpu() # Or whatever you'd like to build off. |
| 300 | + hparams.batch_size = 36 |
| 301 | + hparams.audio_compression = 8 |
| 302 | + hparams.hidden_size = 2048 |
| 303 | + hparams.max_input_seq_length = 600000 |
| 304 | + hparams.max_target_seq_length = 350 |
| 305 | + hparams.max_length = hparams.max_input_seq_length |
| 306 | + hparams.min_length_bucket = hparams.max_input_seq_length // 2 |
| 307 | + hparams.learning_rate = 0.05 |
| 308 | + hparams.train_steps = 5000000 |
| 309 | + hparams.num_hidden_layers = 4 |
| 310 | + return hparams |
0 commit comments