@@ -164,36 +164,6 @@ def __init__(self,
164164 attention_scores = all_attention_scores )
165165 super ().__init__ (
166166 inputs = self .inputs , outputs = outputs , ** kwargs )
167- self ._config = dict (
168- name = self .name ,
169- word_vocab_size = word_vocab_size ,
170- word_embed_size = word_embed_size ,
171- type_vocab_size = type_vocab_size ,
172- max_sequence_length = max_sequence_length ,
173- num_blocks = num_blocks ,
174- hidden_size = hidden_size ,
175- num_attention_heads = num_attention_heads ,
176- intermediate_size = intermediate_size ,
177- intermediate_act_fn = intermediate_act_fn ,
178- hidden_dropout_prob = hidden_dropout_prob ,
179- attention_probs_dropout_prob = attention_probs_dropout_prob ,
180- intra_bottleneck_size = intra_bottleneck_size ,
181- initializer_range = initializer_range ,
182- use_bottleneck_attention = use_bottleneck_attention ,
183- key_query_shared_bottleneck = key_query_shared_bottleneck ,
184- num_feedforward_networks = num_feedforward_networks ,
185- normalization_type = normalization_type ,
186- classifier_activation = classifier_activation ,
187- input_mask_dtype = input_mask_dtype ,
188- ** kwargs ,
189- )
190-
191- def get_config (self ):
192- return dict (self ._config )
193-
194- @classmethod
195- def from_config (cls , config ):
196- return cls (** config )
197167
198168 def get_embedding_table (self ):
199169 return self .embedding_layer .word_embedding .embeddings
0 commit comments