|
| 1 | +The scheduling language enables users to specify and compose transformations to further optimize the code generated by taco. |
| 2 | + |
| 3 | +Consider the following SpMV computation and associated code, which we will transform below: |
| 4 | +```c++ |
| 5 | +Format csr({Dense,Sparse}); |
| 6 | +Tensor<double> A("A", {512, 64}, csr); |
| 7 | +Tensor<double> x("x", {64}, {Dense}); |
| 8 | +Tensor<double> y("y", {512}, {Dense}); |
| 9 | + |
| 10 | +IndexVar i, j; |
| 11 | +y(i) = A(i, j) * x(j); |
| 12 | +IndexStmt stmt = y.getAssignment().concretize(); |
| 13 | +``` |
| 14 | +```c |
| 15 | +for (int32_t i = 0; i < A1_dimension; i++) { |
| 16 | + double y_val = 0.0; |
| 17 | + for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) { |
| 18 | + int32_t j = A2_crd[jA]; |
| 19 | + y_val += A_vals[jA] * x_vals[j]; |
| 20 | + } |
| 21 | + y_vals[i] = y_val; |
| 22 | +} |
| 23 | +``` |
| 24 | +# Pos |
| 25 | + |
| 26 | +The `pos(i, ipos, access)` transformation takes in an index variable `i` that operates over the coordinate space of `access` and replaces it with a derived index variable `ipos` that operates over the same iteration range, but with respect to the the position space. |
| 27 | + |
| 28 | +Since the `pos` transformation is not valid for dense level formats, for the SpMV example, the following would result in an error: |
| 29 | +```c++ |
| 30 | +stmt = stmt.pos(i, IndexVar("ipos"), A); |
| 31 | +``` |
| 32 | + |
| 33 | +We could instead have: |
| 34 | +```c++ |
| 35 | +stmt = stmt.pos(j, IndexVar("jpos"), A); |
| 36 | +``` |
| 37 | +```c |
| 38 | +for (int32_t i = 0; i < A1_dimension; i++) { |
| 39 | + for (int32_t jposA = A2_pos[i]; jposA < A2_pos[(i + 1)]; jposA++) { |
| 40 | + if (jposA < A2_pos[i] || jposA >= A2_pos[(i + 1)]) |
| 41 | + continue; |
| 42 | + |
| 43 | + int32_t j = A2_crd[jposA]; |
| 44 | + y_vals[i] = y_vals[i] + A_vals[jposA] * x_vals[j]; |
| 45 | + } |
| 46 | +} |
| 47 | +``` |
| 48 | + |
| 49 | +# Split |
| 50 | + |
| 51 | +The `split(i, i0, i1, splitFactor)` transformation splits (strip-mines) an index variable `i` into two nested index variables `i0` and `i1`. The size of the inner index variable `i1` is then held constant at `splitFactor`, which must be a positive integer. |
| 52 | + |
| 53 | +For the SpMV example, we could have: |
| 54 | +```c++ |
| 55 | +stmt = stmt.split(j, IndexVar("i0"), IndexVar("i1"), 16); |
| 56 | +``` |
| 57 | +```c |
| 58 | +for (int32_t i0 = 0; i0 < ((A1_dimension + 15) / 16); i0++) { |
| 59 | + for (int32_t i1 = 0; i1 < 16; i1++) { |
| 60 | + int32_t i = i0 * 16 + i1; |
| 61 | + if (i >= A1_dimension) |
| 62 | + continue; |
| 63 | + |
| 64 | + for (int32_t jA = A2_pos[i]; jA < A2_pos[(i + 1)]; jA++) { |
| 65 | + int32_t j = A2_crd[jA]; |
| 66 | + y_vals[i] = y_vals[i] + A_vals[jA] * x_vals[j]; |
| 67 | + } |
| 68 | + } |
| 69 | +} |
| 70 | +``` |
| 71 | + |
| 72 | +# Reorder |
| 73 | + |
| 74 | +The `reorder(vars)` transformation takes in a new ordering for a set of index variables in the expression that are directly nested in the iteration order. |
| 75 | + |
| 76 | +For the SpMV example, we could have: |
| 77 | +```c++ |
| 78 | +stmt = stmt.reorder({j, i}); |
| 79 | +``` |
| 80 | +```c |
| 81 | +for (int32_t jA = A2_pos[iA]; jA < A2_pos[(iA + 1)]; jA++) { |
| 82 | + int32_t j = A2_crd[jA]; |
| 83 | + for (int32_t i = 0; i < A1_dimension; i++) { |
| 84 | + y_vals[i] = y_vals[i] + A_vals[jA] * x_vals[j]; |
| 85 | + } |
| 86 | + } |
| 87 | +``` |
| 88 | + |
| 89 | + |
| 90 | + |
0 commit comments