From f95ece73274da459a96ef75b42e889bbbf25d1b2 Mon Sep 17 00:00:00 2001 From: Purshottam <86057902+psrp7@users.noreply.github.com> Date: Fri, 11 Nov 2022 09:43:13 +0530 Subject: [PATCH] Create linear reg --- ML/linear reg | 48 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 48 insertions(+) create mode 100644 ML/linear reg diff --git a/ML/linear reg b/ML/linear reg new file mode 100644 index 0000000..2f6d71b --- /dev/null +++ b/ML/linear reg @@ -0,0 +1,48 @@ +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +from sklearn import linear_model + +--------------------------------- +df=pd.read_csv("D:\\homeprices.csv") +df +-------------------------------- +%matplotlib inline +plt.xlabel('area') +plt.ylabel('price') +plt.scatter(df.area,df.price,color='red',marker='+') +---------------------------------------------------------- + +reg=linear_model.LinearRegression() + +----------------------------------------------- +reg.fit(df[['area']],df.price) + +------------------------------------ +reg.predict([[3300]]) +----------------------------- +reg.coef_ +--------------------------------- +reg.intercept_ +------------------------- +3300*135.78767123+180616.43835616432 +------------------------------------ +reg.predict([[5000]]) +--------------------------- +d=pd.read_csv("D:\\fp\\areas.csv") +d +------------------------------------------ +d.head(3) +------------------ +reg.predict(d) +---------------- +d['prices']=p +-------------------- +d.to_csv("prediction.csv") +---------------------------- +%matplotlib inline +plt.xlabel('area') +plt.ylabel('price') +plt.scatter(df.area,df.price,color='red',marker='+') +plt.plot(df.area,reg.predict(df[['area']]),color='blue') +----------------------------------------------------------