diff --git a/custom_layers.py b/custom_layers.py index 0c684d5..f87aaec 100644 --- a/custom_layers.py +++ b/custom_layers.py @@ -1,5 +1,6 @@ import tensorflow as tf from tensorflow.keras import layers, initializers, models +from config import yolo_config def conv(x, filters, kernel_size, downsampling=False, activation='leaky', batch_norm=True): @@ -199,17 +200,18 @@ def yolov4_neck(x, num_classes): def yolov4_head(yolo_neck_outputs, classes, anchors, xyscale): + size = yolo_config['img_size'][0] bbox0, object_probability0, class_probabilities0, pred_box0 = get_boxes(yolo_neck_outputs[0], anchors=anchors[0, :, :], classes=classes, - grid_size=52, strides=8, + grid_size=int(52*(size/416)), strides=8, xyscale=xyscale[0]) bbox1, object_probability1, class_probabilities1, pred_box1 = get_boxes(yolo_neck_outputs[1], anchors=anchors[1, :, :], classes=classes, - grid_size=26, strides=16, + grid_size=int(26*(size/416)), strides=16, xyscale=xyscale[1]) bbox2, object_probability2, class_probabilities2, pred_box2 = get_boxes(yolo_neck_outputs[2], anchors=anchors[2, :, :], classes=classes, - grid_size=13, strides=32, + grid_size=int(13*(size/416)), strides=32, xyscale=xyscale[2]) x = [bbox0, object_probability0, class_probabilities0, pred_box0, bbox1, object_probability1, class_probabilities1, pred_box1,