|
| 1 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 2 | +% % |
| 3 | +% SU2 configuration file % |
| 4 | +% Case description: Incompressible flow hydrofoil 5 degrees % |
| 5 | +% Author: Francisco Palacios & Thomas D. Economon % |
| 6 | +% Date: 6.10.2018 % |
| 7 | +% File Version 6.1.0 "Falcon" % |
| 8 | +% % |
| 9 | +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 10 | + |
| 11 | +% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% |
| 12 | +% |
| 13 | +% Physical governing equations (EULER, NAVIER_STOKES, |
| 14 | +% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, |
| 15 | +% POISSON_EQUATION) |
| 16 | +PHYSICAL_PROBLEM= EULER |
| 17 | +% |
| 18 | +% Regime type (COMPRESSIBLE, INCOMPRESSIBLE) |
| 19 | +REGIME_TYPE= INCOMPRESSIBLE |
| 20 | +% |
| 21 | +% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) |
| 22 | +MATH_PROBLEM= DIRECT |
| 23 | +% |
| 24 | +% Restart solution (NO, YES) |
| 25 | +RESTART_SOL= NO |
| 26 | + |
| 27 | +% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------% |
| 28 | +% |
| 29 | +% Initial density for incompressible flows |
| 30 | +% (1.2886 kg/m^3 by default (air), 998.2 Kg/m^3 (water)) |
| 31 | +INC_DENSITY_INIT= 998.2 |
| 32 | +% |
| 33 | +% Initial velocity for incompressible flows (1.0,0,0 m/s by default) |
| 34 | +INC_VELOCITY_INIT= ( 1.775, 0.0, 0.0 ) |
| 35 | + |
| 36 | +% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% |
| 37 | +% |
| 38 | +% Reference origin for moment computation |
| 39 | +REF_ORIGIN_MOMENT_X = 0.25 |
| 40 | +REF_ORIGIN_MOMENT_Y = 0.00 |
| 41 | +REF_ORIGIN_MOMENT_Z = 0.00 |
| 42 | +% |
| 43 | +% Reference length for pitching, rolling, and yawing non-dimensional moment |
| 44 | +REF_LENGTH= 1.0 |
| 45 | +% |
| 46 | +% Reference area for force coefficients (0 implies automatic calculation) |
| 47 | +REF_AREA= 1.0 |
| 48 | + |
| 49 | +% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% |
| 50 | +% |
| 51 | +% Euler wall boundary marker(s) (NONE = no marker) |
| 52 | +MARKER_EULER= ( airfoil, lower_wall, upper_wall ) |
| 53 | +% |
| 54 | +% Inlet boundary marker(s) with the following formats (NONE = no marker) |
| 55 | +% Incompressible: (inlet marker, temperature, velocity magnitude, flow_direction_x, |
| 56 | +% flow_direction_y, flow_direction_z, ... ) where flow_direction is |
| 57 | +% a unit vector. |
| 58 | +MARKER_INLET= ( inlet, 0.0, 1.775, 1.0, 0.0, 0.0 ) |
| 59 | +% |
| 60 | +% Outlet boundary marker(s) (NONE = no marker) |
| 61 | +MARKER_OUTLET= ( outlet, 0.0 ) |
| 62 | +% |
| 63 | +% Marker(s) of the surface to be plotted or designed |
| 64 | +MARKER_PLOTTING= ( airfoil ) |
| 65 | +% |
| 66 | +% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated |
| 67 | +MARKER_MONITORING= ( airfoil ) |
| 68 | + |
| 69 | +% ------------- COMMON PARAMETERS TO DEFINE THE NUMERICAL METHOD --------------% |
| 70 | +% |
| 71 | +% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) |
| 72 | +NUM_METHOD_GRAD= GREEN_GAUSS |
| 73 | +% |
| 74 | +% Courant-Friedrichs-Lewy condition of the finest grid |
| 75 | +CFL_NUMBER= 1e6 |
| 76 | +% |
| 77 | +% Adaptive CFL number (NO, YES) |
| 78 | +CFL_ADAPT= NO |
| 79 | +% |
| 80 | +% Parameters of the adaptive CFL number (factor down, factor up, CFL min value, |
| 81 | +% CFL max value ) |
| 82 | +CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) |
| 83 | +% |
| 84 | +% Runge-Kutta alpha coefficients |
| 85 | +RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) |
| 86 | +% |
| 87 | +% Number of total iterations |
| 88 | +EXT_ITER= 9999 |
| 89 | + |
| 90 | +% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% |
| 91 | +% |
| 92 | +% Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER_JACOBI, |
| 93 | +% SMOOTHER_ILU, SMOOTHER_LUSGS, |
| 94 | +% SMOOTHER_LINELET) |
| 95 | +LINEAR_SOLVER= FGMRES |
| 96 | +% |
| 97 | +% Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) |
| 98 | +LINEAR_SOLVER_PREC= ILU |
| 99 | +% |
| 100 | +% Linael solver ILU preconditioner fill-in level (0 by default) |
| 101 | +LINEAR_SOLVER_ILU_FILL_IN= 0 |
| 102 | +% |
| 103 | +% Minimum error of the linear solver for implicit formulations |
| 104 | +LINEAR_SOLVER_ERROR= 1E-15 |
| 105 | +% |
| 106 | +% Max number of iterations of the linear solver for the implicit formulation |
| 107 | +LINEAR_SOLVER_ITER= 25 |
| 108 | + |
| 109 | +% -------------------------- MULTIGRID PARAMETERS -----------------------------% |
| 110 | +% |
| 111 | +% Multi-Grid Levels (0 = no multi-grid) |
| 112 | +MGLEVEL= 0 |
| 113 | +% |
| 114 | +% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) |
| 115 | +MGCYCLE= W_CYCLE |
| 116 | +% |
| 117 | +% Multi-grid pre-smoothing level |
| 118 | +MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) |
| 119 | +% |
| 120 | +% Multi-grid post-smoothing level |
| 121 | +MG_POST_SMOOTH= ( 1, 1, 1, 1 ) |
| 122 | +% |
| 123 | +% Jacobi implicit smoothing of the correction |
| 124 | +MG_CORRECTION_SMOOTH= ( 1, 1, 1, 1 ) |
| 125 | +% |
| 126 | +% Damping factor for the residual restriction |
| 127 | +MG_DAMP_RESTRICTION= 0.85 |
| 128 | +% |
| 129 | +% Damping factor for the correction prolongation |
| 130 | +MG_DAMP_PROLONGATION= 0.85 |
| 131 | + |
| 132 | +% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% |
| 133 | +% |
| 134 | +% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, |
| 135 | +% TURKEL_PREC, MSW) |
| 136 | +CONV_NUM_METHOD_FLOW= JST |
| 137 | +% |
| 138 | +% 2nd and 4th order artificial dissipation coefficients |
| 139 | +JST_SENSOR_COEFF= ( 0.0, 0.02 ) |
| 140 | +% |
| 141 | +% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) |
| 142 | +TIME_DISCRE_FLOW= EULER_IMPLICIT |
| 143 | + |
| 144 | +% --------------------------- CONVERGENCE PARAMETERS --------------------------% |
| 145 | +% Convergence criteria (CAUCHY, RESIDUAL) |
| 146 | +% |
| 147 | +CONV_CRITERIA= RESIDUAL |
| 148 | +% |
| 149 | +% Residual reduction (order of magnitude with respect to the initial value) |
| 150 | +RESIDUAL_REDUCTION= 10 |
| 151 | +% |
| 152 | +% Min value of the residual (log10 of the residual) |
| 153 | +RESIDUAL_MINVAL= -18 |
| 154 | +% |
| 155 | +% Start Cauchy criteria at iteration number |
| 156 | +STARTCONV_ITER= 10 |
| 157 | +% |
| 158 | +% Number of elements to apply the criteria |
| 159 | +CAUCHY_ELEMS= 50 |
| 160 | +% |
| 161 | +% Epsilon to control the series convergence |
| 162 | +CAUCHY_EPS= 1E-6 |
| 163 | +% |
| 164 | +% Function to apply the criteria (LIFT, DRAG, SENS_GEOMETRY, SENS_MACH, |
| 165 | +% DELTA_LIFT, DELTA_DRAG) |
| 166 | +CAUCHY_FUNC_FLOW= DRAG |
| 167 | + |
| 168 | +% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% |
| 169 | +% |
| 170 | +% Mesh input file |
| 171 | +MESH_FILENAME= mesh_NACA0012_5deg_6814.su2 |
| 172 | +% |
| 173 | +% Mesh input file format (SU2, CGNS, NETCDF_ASCII) |
| 174 | +MESH_FORMAT= SU2 |
| 175 | +% |
| 176 | +% Restart flow input file |
| 177 | +SOLUTION_FLOW_FILENAME= solution_flow.dat |
| 178 | +% |
| 179 | +% Output file format (PARAVIEW, TECPLOT) |
| 180 | +OUTPUT_FORMAT= PARAVIEW |
| 181 | +% |
| 182 | +% Output file convergence history (w/o extension) |
| 183 | +CONV_FILENAME= history |
| 184 | +% |
| 185 | +% Output file restart flow |
| 186 | +RESTART_FLOW_FILENAME= restart_flow.dat |
| 187 | +% |
| 188 | +% Output file flow (w/o extension) variables |
| 189 | +VOLUME_FLOW_FILENAME= flow |
| 190 | +% |
| 191 | +% Output file surface flow coefficient (w/o extension) |
| 192 | +SURFACE_FLOW_FILENAME= surface_flow |
| 193 | +% |
| 194 | +% Writing solution file frequency |
| 195 | +WRT_SOL_FREQ= 50 |
| 196 | +% |
| 197 | +% Writing convergence history frequency |
| 198 | +WRT_CON_FREQ= 1 |
0 commit comments