Skip to content

Commit c63133d

Browse files
committed
partial WBE
Signed-off-by: jtneedels <jneedels@stanford.edu>
1 parent 89dd8b2 commit c63133d

File tree

1 file changed

+36
-4
lines changed

1 file changed

+36
-4
lines changed

_docs_v7/Thermochemical-Nonequilibrium.md

Lines changed: 36 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -10,9 +10,9 @@ This page contains a summary of the physical models implemented in the NEMO solv
1010
- [Thermodynamic Model](#thermodynamic-model)
1111
- [Finite Rate Chemistry](#finite-rate-chemistry)
1212
- [Vibrational Relaxation](#vibrational-relaxation)
13-
- [Transport Coefficients](#transport-coefficients)
14-
-[Wilkes-Blottner-Eucken](#wilkes-blottner-eucken)
15-
-[Gupta-Yos](#gupta-yos)
13+
- [Viscous Phenomena and Transport Coefficients](#viscous-phenomena-and-transport-coefficients)
14+
- [Wilkes-Blottner-Eucken](#wilkes-blottner-eucken)
15+
- [Gupta-Yos](#gupta-yos)
1616

1717
---
1818

@@ -136,7 +136,7 @@ where $\sigma_s$ is the effective collision~cross-section.
136136

137137
---
138138

139-
# Transport Coefficients #
139+
# Viscous Phenomena and Transport Coefficients #
140140

141141
| Solver | Version |
142142
| --- | --- |
@@ -164,6 +164,38 @@ $D_s$, $\mu$, and $\kappa$ can be evaluated using either a Wilkes-Blottner-Eucke
164164

165165
## Wilkes-Blottner-Eucken ##
166166

167+
The mixture dynamic viscosity and thermal conductivity are computed using Wilke's semi-empirical mixing rule as
168+
169+
$$
170+
\mu = \sum_s \frac{X_s \mu_s}{\phi_s},
171+
$$
172+
173+
and
174+
175+
$$
176+
\kappa = \sum_s \frac{X_s \kappa_s}{\phi_s},
177+
$$
178+
179+
where $X_s$ is the mole fraction of species $s$. The species dynamic viscosity is computed using Blottner's three paramter curve fit for high temperature air,
180+
181+
$$
182+
\mu_s = 0.1 \exp [(A_s\log(T) + B_s)\log(T) + C_s].
183+
$$
184+
185+
The species thermal conductivities are computed according to Eucken's formula as
186+
187+
$$
188+
\kappa^{tr}_s = \mu_s \left( \frac{5}{2} C_{v_s}^{trans} + C_{v_s}^{rot} \right),
189+
$$
190+
191+
$$
192+
\kappa^{ve}_s = \mu_s C^{ve}_{v_s}.
193+
$$
194+
195+
And the term $\phi_s$ is given by
196+
$$
197+
\phi_s = \sum_r X_r \left[ 1 + \sqrt{\frac{\mu_r}{\mu_s}}\left( \frac{M_r}{M_s} \right)^{1/4} \right]^{2} \left[ \sqrt{8 \left(1 + \frac{M_s}{M_r} \right)} \right]^{-1}.
198+
$$
167199

168200

169201
## Gupta-Yos ##

0 commit comments

Comments
 (0)