Skip to content

Commit 8fc2b3b

Browse files
committed
align
1 parent 2a40dfd commit 8fc2b3b

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

_vandv/30p30n.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ The SA-noft2 turbulence model was used with first order advection, the convectiv
2929
## Mesh Description
3030

3131
Structured meshes of increasing density are used to perform a grid convergence study. The meshes are 2D SU2 versions of the publicly available [2.5D APC-IV JAXA grids](https://cfdws.chofu.jaxa.jp/apc/grids/3element_highlift_airfoil/30P30N_modified_slat_configF/cgns/).
32-
The SU2 versions can be downloaded from the [SU2 V&V GitHub repository]().
32+
The SU2 versions can be downloaded from the [SU2 V&V GitHub repository](https://github.com/su2code/VandV/tree/master/rans/30p30n).
3333
The mesh designations and approximate sizes are:
3434

3535
- L1 "coarse" (2 x "fine") - 64k quadrilaterals
@@ -56,12 +56,12 @@ For completeness, we also test the effect of the limiter on the "fine" level by
5656
We observe second order convergence of the lift and drag coefficients, and good agreement between Roe + van Albada, JST, [FaSTAR results](https://jaxa.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=2921&item_no=1&page_id=13&block_id=21), and [Cflow results](https://jaxa.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=2923&item_no=1&page_id=13&block_id=21).
5757
The Roe + Venkatakrishnan configuration predicts lower values, which were observed to be sensitive to the limiter coefficient. For example lowering it to 0.025 increases drag above the values obtained with the other two configurations.
5858

59-
<p align="center">
59+
<p align="right">
6060
<img src="/vandv_files/30p30n/drag.png" alt="Drag coefficient at 5.5deg AoA" />
6161
</p>
6262
Drag coefficient at 5.5deg AoA.
6363

64-
<p align="center">
64+
<p align="righy">
6565
<img src="/vandv_files/30p30n/lift.png" alt="Lift coefficient at 5.5deg AoA" />
6666
</p>
6767
Lift coefficient at 5.5deg AoA
@@ -71,12 +71,12 @@ Lift coefficient at 5.5deg AoA
7171
Roe + van Albada and JST agree well on the maximum lift, and again match the results of other codes.
7272
However JST predicts the flow to remain attached at significantly higher angle-of-attach than expected.
7373

74-
<p align="center">
74+
<p align="right">
7575
<img src="/vandv_files/30p30n/max_lift.png" alt="Lift coefficient on the fine grid level" />
7676
</p>
7777
Lift coefficient on the fine grid level
7878

79-
<p align="center">
79+
<p align="right">
8080
<img src="/vandv_files/30p30n/max_drag.png" alt="Drag coefficient on the fine grid level" />
8181
</p>
8282
Drag coefficient on the fine grid level
@@ -88,12 +88,12 @@ However, JST predicts significantly higher skin friction coefficient (Cf) on the
8888
Away from this critical point the lift and drag characteristics are dominated by the pressure distribution and thus the two schemes agree well.
8989
The only significant differences in Cf between the van Albada and Venkatakrishnan limiters are at the trailing-edges.
9090

91-
<p align="center">
91+
<p align="right">
9292
<img src="/vandv_files/30p30n/cp.png" alt="Pressure coefficient distribution at 5.5deg AoA on fine grid level" />
9393
</p>
9494
Pressure coefficient distribution at 5.5deg AoA on fine grid level
9595

96-
<p align="center">
96+
<p align="right">
9797
<img src="/vandv_files/30p30n/cf.png" alt="Skin friction coefficient distribution at 5.5deg AoA on fine grid level" />
9898
</p>
9999
Skin friction coefficient distribution at 5.5deg AoA on fine grid level

0 commit comments

Comments
 (0)