diff --git a/lib/node_modules/@stdlib/math/special/data/unary.json b/lib/node_modules/@stdlib/math/special/data/unary.json index 27fd0f155b42..40ed9f32ca27 100644 --- a/lib/node_modules/@stdlib/math/special/data/unary.json +++ b/lib/node_modules/@stdlib/math/special/data/unary.json @@ -9446,15 +9446,356 @@ ] }, "@stdlib/math/base/special/fresnel": {}, - "@stdlib/math/base/special/fresnelc": {}, - "@stdlib/math/base/special/fresnels": {}, - "@stdlib/math/base/special/gamma": {}, + "@stdlib/math/base/special/fresnelc": { + "$schema": "math/base@v1.0", + "base_alias": "fresnelc", + "alias": "fresnelc", + "pkg_desc": "compute the Fresnel integral C(x)", + "desc": "computes the Fresnel integral C(x)", + "short_desc": "Fresnel integral C(x)", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "example_values": [ + 0, + 1, + -1, + 1.25, + 2.1, + 5.06, + -10, + 0.75, + -0.66, + 1.11, + 2.24, + -0.707, + 18.2, + 27.9, + -0.9, + -0.5, + 0.5, + 7.72, + 21, + -2 + ] + } + ], + "returns": { + "desc": "function value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "fresnel", + "integral", + "fresnelc" + ], + "extra_keywords": [] + }, + "@stdlib/math/base/special/fresnels": { + "$schema": "math/base@v1.0", + "base_alias": "fresnels", + "alias": "fresnels", + "pkg_desc": "compute the Fresnel integral S(x)", + "desc": "computes the Fresnel integral S(x)", + "short_desc": "Fresnel integral S(x)", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -10, + 10 + ] + }, + "example_values": [ + 0, + 1, + -1, + 1.25, + 2.1, + 5.06, + -10, + 0.75, + -0.66, + 1.11, + 2.24, + -0.707, + 18.2, + 27.9, + -0.9, + -0.5, + 0.5, + 7.72, + 21, + -2 + ] + } + ], + "returns": { + "desc": "function value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "fresnel", + "fresnels", + "sine", + "integral" + ], + "extra_keywords": [] + }, + "@stdlib/math/base/special/gamma": { + "$schema": "math/base@v1.0", + "base_alias": "gamma", + "alias": "gamma", + "pkg_desc": "evaluate the gamma function", + "desc": "evaluates the gamma function", + "short_desc": "gamma function", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -10, + 10 + ] + }, + "example_values": [ + 1, + 3.5, + 4.5, + -0.5, + 2, + 3, + -3.5, + 0.1, + 4, + 1.5, + 5, + 0.5, + 2.5, + -1.5, + -2.5, + 50, + 100, + -50.5, + -100.5, + 2.2 + ] + } + ], + "output_policy": "real_floating_point_and_generic", + "returns": { + "desc": "function value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "gamma", + "factorial" + ], + "extra_keywords": [] + }, "@stdlib/math/base/special/gamma-lanczos-sum": {}, "@stdlib/math/base/special/gamma-lanczos-sum-expg-scaledf": {}, "@stdlib/math/base/special/gamma-lanczos-sum-expg-scaled": {}, "@stdlib/math/base/special/gamma1pm1": {}, - "@stdlib/math/base/special/gammasgnf": {}, - "@stdlib/math/base/special/gammasgn": {}, + "@stdlib/math/base/special/gammasgnf": { + "$schema": "math/base@v1.0", + "base_alias": "gammasgn", + "alias": "gammasgnf", + "pkg_desc": "compute the sign of the gamma function for a single-precision floating-point number", + "desc": "computes the sign of the gamma function for a single-precision floating-point number", + "short_desc": "sign of the gamma function", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "float", + "dtype": "float32" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -10, + 10 + ] + }, + "example_values": [ + 1, + -0.5, + -1.5, + 1.5, + 2, + -2, + 3, + 4, + 5, + 0.5, + 2.5, + -2.5, + -3.5, + 0, + -1, + -3, + 10, + -10.5, + 0.1, + -0.1 + ] + } + ], + "output_policy": "real_floating_point_and_generic", + "returns": { + "desc": "sign of the gamma function", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "float", + "dtype": "float32" + } + }, + "keywords": [ + "gamma", + "sign", + "gammasgn" + ], + "extra_keywords": [] + }, + "@stdlib/math/base/special/gammasgn": { + "$schema": "math/base@v1.0", + "base_alias": "gammasgn", + "alias": "gammasgn", + "pkg_desc": "compute the sign of the gamma function", + "desc": "computes the sign of the gamma function", + "short_desc": "sign of the gamma function", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -10, + 10 + ] + }, + "example_values": [ + 1, + -0.5, + -1.5, + 1.5, + 2, + -2, + 3, + 4, + 5, + 0.5, + 2.5, + -2.5, + -3.5, + 0, + -1, + -3, + 10, + -10.5, + 0.1, + -0.1 + ] + } + ], + "output_policy": "real_floating_point_and_generic", + "returns": { + "desc": "sign of the gamma function", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "gamma", + "sign", + "gammasgn" + ], + "extra_keywords": [] + }, "@stdlib/math/base/special/hacovercosf": { "$schema": "math/base@v1.0", "base_alias": "hacovercos", @@ -9486,26 +9827,113 @@ ] }, "example_values": [ - 64, - 27, + 64, + 27, + 0, + 0.1, + -9, + 8, + -1, + 125, + -10.2, + 11.3, + -12.4, + 3.5, + -1.6, + 15.7, + -16, + 17.9, + -188, + 19.11, + -200, + 21.15 + ] + } + ], + "output_policy": "real_floating_point_and_generic", + "returns": { + "desc": "half-value coversed cosine", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "float", + "dtype": "float32" + } + }, + "keywords": [ + "hacovercos", + "hacovercosf", + "hacovercosin", + "hacovercosine", + "versed cosine", + "half-value", + "coversed", + "cosinus versus", + "hacovercosinus", + "hcc", + "versed", + "cosine", + "cos", + "sine", + "sin", + "trig", + "trigonometry", + "radians", + "angle" + ], + "extra_keywords": [] + }, + "@stdlib/math/base/special/hacovercos": { + "$schema": "math/base@v1.0", + "base_alias": "hacovercos", + "alias": "hacovercos", + "pkg_desc": "compute the half-value coversed cosine", + "desc": "computes the half-value coversed cosine", + "short_desc": "half-value coversed cosine", + "parameters": [ + { + "name": "x", + "desc": "input value (in radians)", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + 0, + 6.283185307179586 + ] + }, + "example_values": [ 0, + 0.523, + 0.785, + 1.047, + 1.571, + 2.094, + 2.618, + 3.142, + 3.665, + 4.189, + 4.712, + 5.236, + 5.759, + 6.283, + -0.523, + -1.047, + -1.571, 0.1, - -9, - 8, - -1, - 125, - -10.2, - 11.3, - -12.4, - 3.5, - -1.6, - 15.7, - -16, - 17.9, - -188, - 19.11, - -200, - 21.15 + 1.5, + 3 ] } ], @@ -9515,34 +9943,24 @@ "type": { "javascript": "number", "jsdoc": "number", - "c": "float", - "dtype": "float32" + "c": "double", + "dtype": "float64" } }, "keywords": [ "hacovercos", - "hacovercosf", "hacovercosin", "hacovercosine", - "versed cosine", - "half-value", "coversed", - "cosinus versus", - "hacovercosinus", "hcc", "versed", "cosine", - "cos", "sine", - "sin", "trig", - "trigonometry", - "radians", - "angle" + "trigonometry" ], "extra_keywords": [] }, - "@stdlib/math/base/special/hacovercos": {}, "@stdlib/math/base/special/hacoversinf": { "$schema": "math/base@v1.0", "base_alias": "hacoversin", @@ -10392,26 +10810,253 @@ 0.5, 1, 2, - 3, - 4, - 9, - 16, - 25, - 36, - 49, - 64, - 81, - 100, - 0.1, - 10, - 50, - 99.99 + 3, + 4, + 9, + 16, + 25, + 36, + 49, + 64, + 81, + 100, + 0.1, + 10, + 50, + 99.99 + ] + } + ], + "output_policy": "real_floating_point_and_generic", + "returns": { + "desc": "common logarithm", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "log10", + "common", + "base 10", + "logarithm", + "log" + ], + "extra_keywords": [ + "math.log10" + ] + }, + "@stdlib/math/base/special/log1mexp": { + "$schema": "math/base@v1.0", + "base_alias": "log1mexp", + "alias": "log1mexp", + "pkg_desc": "evaluate the natural logarithm of 1-exp(-|x|)", + "desc": "evaluates the natural logarithm of 1-exp(-|x|)", + "short_desc": "natural logarithm of of 1-exp(-|x|)", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -100, + 100 + ] + }, + "example_values": [ + 0, + -0.01, + 0.25, + -0.5, + 1, + 2, + 3, + 4, + 9, + 16, + 25, + -36, + 49, + -64, + 81, + 100, + -0.1, + 10, + -50, + 99.99 + ] + } + ], + "output_policy": "real_floating_point_and_generic", + "returns": { + "desc": "natural logarithm", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "ln", + "log1mexp", + "natural", + "logarithm", + "log" + ], + "extra_keywords": [ + "math.log", + "math.log1p" + ] + }, + "@stdlib/math/base/special/log1p": { + "$schema": "math/base@v1.0", + "base_alias": "log1p", + "alias": "log1p", + "pkg_desc": "evaluate the natural logarithm of 1+x", + "desc": "evaluates the natural logarithm of 1+x", + "short_desc": "natural logarithm of 1+x", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": -1, + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -1, + 100 + ] + }, + "example_values": [ + -0.99, + 3, + 0.01, + 0.25, + 4, + 9, + -0.9, + 25, + 36, + -0.5, + -0.25, + 16, + 49, + -0.1, + 0, + 0.5, + 1, + 2, + 64, + 81 + ] + } + ], + "output_policy": "real_floating_point_and_generic", + "returns": { + "desc": "natural logarithm of 1+x", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "ln", + "log1p", + "natural", + "logarithm", + "log" + ], + "extra_keywords": [ + "math.log", + "math.log1p" + ] + }, + "@stdlib/math/base/special/log1pexp": { + "$schema": "math/base@v1.0", + "base_alias": "log1pexp", + "alias": "log1pexp", + "pkg_desc": "evaluate the natural logarithm of 1+exp(x)", + "desc": "evaluate the natural logarithm of 1+exp(x)", + "short_desc": "natural logarithm of 1+exp(x)", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -100, + 100 + ] + }, + "example_values": [ + -100, + 4, + 5, + 10, + -10, + -5, + 3, + 20, + 50, + -2, + -1, + 90, + 99, + -0.5, + 0, + 0.5, + 1, + 2, + -75, + 100 ] } ], "output_policy": "real_floating_point_and_generic", "returns": { - "desc": "common logarithm", + "desc": "natural logarithm of 1+exp(x)", "type": { "javascript": "number", "jsdoc": "number", @@ -10420,23 +11065,24 @@ } }, "keywords": [ - "log10", - "common", - "base 10", + "ln", + "log1pexp", + "natural", "logarithm", "log" ], "extra_keywords": [ - "math.log10" + "math.log", + "math.log1p" ] }, - "@stdlib/math/base/special/log1mexp": { + "@stdlib/math/base/special/log1pmx": { "$schema": "math/base@v1.0", - "base_alias": "log1mexp", - "alias": "log1mexp", - "pkg_desc": "evaluate the natural logarithm of 1-exp(-|x|)", - "desc": "evaluates the natural logarithm of 1-exp(-|x|)", - "short_desc": "natural logarithm of of 1-exp(-|x|)", + "base_alias": "log1pmx", + "alias": "log1pmx", + "pkg_desc": "evaluate ln(1+x) - x", + "desc": "evaluates ln(1+x) - x", + "short_desc": "ln(1+x) - x", "parameters": [ { "name": "x", @@ -10449,44 +11095,44 @@ }, "domain": [ { - "min": "-infinity", + "min": -1, "max": "infinity" } ], "rand": { "prng": "random/base/uniform", "parameters": [ - -100, + -1, 100 ] }, "example_values": [ - 0, - -0.01, - 0.25, - -0.5, + -0.99, 1, 2, - 3, - 4, - 9, - 16, + -0.9, + 0.25, + 0.5, + -0.5, + 10, 25, - -36, - 49, - -64, - 81, - 100, + 50, + -0.25, -0.1, - 10, - -50, - 99.99 + 0, + 0.01, + 3, + 4, + 5, + 75, + 90, + 100 ] } ], "output_policy": "real_floating_point_and_generic", "returns": { - "desc": "natural logarithm", + "desc": "function value", "type": { "javascript": "number", "jsdoc": "number", @@ -10496,7 +11142,6 @@ }, "keywords": [ "ln", - "log1mexp", "natural", "logarithm", "log" @@ -10506,9 +11151,6 @@ "math.log1p" ] }, - "@stdlib/math/base/special/log1p": {}, - "@stdlib/math/base/special/log1pexp": {}, - "@stdlib/math/base/special/log1pmx": {}, "@stdlib/math/base/special/log2": { "$schema": "math/base@v1.0", "base_alias": "log2", @@ -11615,9 +12257,234 @@ ], "extra_keywords": [] }, - "@stdlib/math/base/special/rcbrtf": {}, - "@stdlib/math/base/special/rcbrt": {}, - "@stdlib/math/base/special/riemann-zeta": {}, + "@stdlib/math/base/special/rcbrtf": { + "$schema": "math/base@v1.0", + "base_alias": "rcbrt", + "alias": "rcbrtf", + "pkg_desc": "compute the reciprocal cube root of a single-precision floating-point number", + "desc": "computes the reciprocal cube root of a single-precision floating-point number", + "short_desc": "reciprocal cube root", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "float", + "dtype": "float32" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -100, + 100 + ] + }, + "example_values": [ + -100, + -64, + -27, + -8, + -1, + -0.5, + -0.125, + -0.01, + 0.01, + 0.125, + 0.5, + 1, + 2, + 3, + 4, + 8, + 27, + 64, + 81, + 100 + ] + } + ], + "returns": { + "desc": "reciprocal cube root", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "float", + "dtype": "float32" + } + }, + "keywords": [ + "rcbrt", + "principal", + "cube", + "root", + "power", + "reciprocal", + "inverse" + ], + "extra_keywords": [ + "math.cbrt" + ] + }, + "@stdlib/math/base/special/rcbrt": { + "$schema": "math/base@v1.0", + "base_alias": "rcbrt", + "alias": "rcbrt", + "pkg_desc": "compute the reciprocal cube root of a double-precision floating-point number", + "desc": "computes the reciprocal cube root of a double-precision floating-point number", + "short_desc": "reciprocal cube root", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -100, + 100 + ] + }, + "example_values": [ + -100, + -64, + -27, + -8, + -1, + -0.5, + -0.125, + -0.01, + 0.01, + 0.125, + 0.5, + 1, + 2, + 3, + 4, + 8, + 27, + 64, + 81, + 100 + ] + } + ], + "returns": { + "desc": "reciprocal cube root", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "rcbrt", + "principal", + "cube", + "root", + "power", + "reciprocal", + "inverse" + ], + "extra_keywords": [ + "math.cbrt" + ] + }, + "@stdlib/math/base/special/riemann-zeta": { + "$schema": "math/base@v1.0", + "base_alias": "zeta", + "alias": "zeta", + "pkg_desc": "evaluate the Riemann zeta function as a function of a real variable `s`", + "desc": "evaluates the Riemann zeta function as a function of a real variable `s`", + "short_desc": "Riemann zeta", + "parameters": [ + { + "name": "x", + "desc": "input value", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + }, + "domain": [ + { + "min": "-infinity", + "max": "infinity" + } + ], + "rand": { + "prng": "random/base/uniform", + "parameters": [ + -100, + 100 + ] + }, + "example_values": [ + 1.1, + -4, + 70, + 0.5, + -10, + 5.6, + -4.29, + -3.14, + 2.75, + 1.76, + -0.5, + 0, + 0.15, + 0.97, + -1.1, + 20.85, + 3.66, + -4.22, + 5.56, + -6, + 10.21, + 20.05, + -50.25, + 100.7 + ] + } + ], + "returns": { + "desc": "Riemann zeta", + "type": { + "javascript": "number", + "jsdoc": "number", + "c": "double", + "dtype": "float64" + } + }, + "keywords": [ + "zeta", + "riemann", + "euler", + "physics", + "complex analysis" + ], + "extra_keywords": [] + }, "@stdlib/math/base/special/roundf": { "$schema": "math/base@v1.0", "base_alias": "round",