|
| 1 | +from typing import Any |
| 2 | + |
| 3 | +from dsp.modules.lm import LM |
| 4 | + |
| 5 | +ibm_watsonx_ai_api_error = False |
| 6 | + |
| 7 | +try: |
| 8 | + import ibm_watsonx_ai # noqa: F401 |
| 9 | + from ibm_watsonx_ai.foundation_models import Model # type: ignore |
| 10 | + |
| 11 | +except ImportError: |
| 12 | + ibm_watsonx_ai_api_error = Exception |
| 13 | + |
| 14 | + |
| 15 | +class Watsonx(LM): |
| 16 | + """Wrapper around Watsonx AI's API. |
| 17 | +
|
| 18 | + The constructor initializes the base class LM to support prompting requests to Watsonx models. |
| 19 | + This requires the following parameters: |
| 20 | + Args: |
| 21 | + model (str): the type of model to use from IBM Watsonx AI. |
| 22 | + credentials ([dict]): credentials to Watson Machine Learning instance. |
| 23 | + project_id (str): ID of the Watson Studio project. |
| 24 | + **kwargs: Additional arguments to pass to the API provider. This is initialized with default values for relevant |
| 25 | + text generation parameters needed for communicating with Watsonx API, such as: |
| 26 | + - decoding_method |
| 27 | + - max_new_tokens |
| 28 | + - min_new_tokens |
| 29 | + - stop_sequences |
| 30 | + - repetition_penalty |
| 31 | + """ |
| 32 | + |
| 33 | + def __init__(self, model, credentials, project_id, **kwargs): |
| 34 | + """Parameters |
| 35 | +
|
| 36 | + model : str |
| 37 | + Which pre-trained model from Watsonx.ai to use? |
| 38 | + Choices are [ |
| 39 | + `mistralai/mixtral-8x7b-instruct-v01`, |
| 40 | + `ibm/granite-13b-instruct-v2`, |
| 41 | + `meta-llama/llama-3-70b-instruct`] |
| 42 | + credentials : [dict] |
| 43 | + Credentials to Watson Machine Learning instance. |
| 44 | + project_id : str |
| 45 | + ID of the Watson Studio project. |
| 46 | + **kwargs: dict |
| 47 | + Additional arguments to pass to the API provider. |
| 48 | + """ |
| 49 | + self.model = model |
| 50 | + self.credentials = credentials |
| 51 | + self.project_id = project_id |
| 52 | + self.provider = "ibm" |
| 53 | + self.model_type = "instruct" |
| 54 | + self.kwargs = { |
| 55 | + "temperature": 0, |
| 56 | + "decoding_method": "greedy", |
| 57 | + "max_new_tokens": 150, |
| 58 | + "min_new_tokens": 0, |
| 59 | + "stop_sequences": [], |
| 60 | + "repetition_penalty": 1, |
| 61 | + "num_generations": 1, |
| 62 | + **kwargs, |
| 63 | + } |
| 64 | + |
| 65 | + self.client = Model( |
| 66 | + model_id=self.model, |
| 67 | + params=self.kwargs, |
| 68 | + credentials=self.credentials, |
| 69 | + project_id=self.project_id, |
| 70 | + ) |
| 71 | + |
| 72 | + self.history: list[dict[str, Any]] = [] |
| 73 | + |
| 74 | + def basic_request(self, prompt: str, **kwargs) -> Any: |
| 75 | + raw_kwargs = kwargs |
| 76 | + kwargs = {**self.kwargs, **kwargs} |
| 77 | + |
| 78 | + response = self.client.generate(prompt, params={**kwargs}) |
| 79 | + |
| 80 | + history = { |
| 81 | + "prompt": prompt, |
| 82 | + "response": response, |
| 83 | + "kwargs": kwargs, |
| 84 | + "raw_kwargs": raw_kwargs, |
| 85 | + } |
| 86 | + self.history.append(history) |
| 87 | + |
| 88 | + return response |
| 89 | + |
| 90 | + def request(self, prompt: str, **kwargs) -> Any: |
| 91 | + # Handles the specific prompting for each supported model and the retrieval of completions from IBM Watsonx AI |
| 92 | + |
| 93 | + if self.model == "mistralai/mixtral-8x7b-instruct-v01": |
| 94 | + prompt = "<s>[INST]" + prompt + "</INST>" |
| 95 | + elif self.model == "meta-llama/llama-3-70b-instruct": |
| 96 | + prompt = ( |
| 97 | + "<|begin_of_text|><|start_header_id|>system<|end_header_id|>" |
| 98 | + + prompt |
| 99 | + + "<|eot_id|><|start_header_id|>user<|end_header_id|>" |
| 100 | + ) |
| 101 | + |
| 102 | + return self.basic_request(prompt, **kwargs) |
| 103 | + |
| 104 | + def __call__( |
| 105 | + self, |
| 106 | + prompt: str, |
| 107 | + only_completed: bool = True, |
| 108 | + return_sorted: bool = False, |
| 109 | + **kwargs, |
| 110 | + ) -> list[dict[str, Any]]: |
| 111 | + """Retrieves completions from Watsonx. |
| 112 | +
|
| 113 | + Args: |
| 114 | + prompt (str): prompt to send to Watsonx |
| 115 | + only_completed (bool, optional): return only completed responses and ignores completion due to length. |
| 116 | + Defaults to True. |
| 117 | + return_sorted (bool, optional): sort the completion choices using the returned probabilities. |
| 118 | + Defaults to False. |
| 119 | + **kwargs: Additional arguments to pass |
| 120 | +
|
| 121 | + Returns: |
| 122 | + list[dict[str, Any]]: list of completion choices |
| 123 | + """ |
| 124 | + if only_completed is False: |
| 125 | + raise ValueError("only_completed is True for now") |
| 126 | + |
| 127 | + if return_sorted: |
| 128 | + raise ValueError("return_sorted is False for now") |
| 129 | + |
| 130 | + response = self.request(prompt, **kwargs) |
| 131 | + |
| 132 | + return [result["generated_text"] for result in response["results"]] |
0 commit comments